Step |
Hyp |
Ref |
Expression |
1 |
|
mhppwdeg.h |
|
2 |
|
mhppwdeg.p |
|
3 |
|
mhppwdeg.t |
|
4 |
|
mhppwdeg.e |
|
5 |
|
mhppwdeg.r |
|
6 |
|
mhppwdeg.n |
|
7 |
|
mhppwdeg.x |
|
8 |
|
oveq1 |
|
9 |
|
oveq2 |
|
10 |
9
|
fveq2d |
|
11 |
8 10
|
eleq12d |
|
12 |
|
oveq1 |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq2d |
|
15 |
12 14
|
eleq12d |
|
16 |
|
oveq1 |
|
17 |
|
oveq2 |
|
18 |
17
|
fveq2d |
|
19 |
16 18
|
eleq12d |
|
20 |
|
oveq1 |
|
21 |
|
oveq2 |
|
22 |
21
|
fveq2d |
|
23 |
20 22
|
eleq12d |
|
24 |
|
reldmmhp |
|
25 |
24 1 7
|
elfvov1 |
|
26 |
2 25 5
|
mplsca |
|
27 |
26
|
fveq2d |
|
28 |
27
|
fveq2d |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
2 25 5
|
mpllmodd |
|
32 |
2 25 5
|
mplringd |
|
33 |
29 30 31 32
|
ascl1 |
|
34 |
28 33
|
eqtrd |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
35 36
|
ringidcl |
|
38 |
5 37
|
syl |
|
39 |
1 2 29 35 25 5 38
|
mhpsclcl |
|
40 |
34 39
|
eqeltrrd |
|
41 |
|
eqid |
|
42 |
1 2 41 7
|
mhpmpl |
|
43 |
3 41
|
mgpbas |
|
44 |
|
eqid |
|
45 |
3 44
|
ringidval |
|
46 |
43 45 4
|
mulg0 |
|
47 |
42 46
|
syl |
|
48 |
1 7
|
mhprcl |
|
49 |
48
|
nn0cnd |
|
50 |
49
|
mul01d |
|
51 |
50
|
fveq2d |
|
52 |
40 47 51
|
3eltr4d |
|
53 |
|
eqid |
|
54 |
5
|
ad2antrr |
|
55 |
|
simpr |
|
56 |
7
|
ad2antrr |
|
57 |
1 2 53 54 55 56
|
mhpmulcl |
|
58 |
3
|
ringmgp |
|
59 |
32 58
|
syl |
|
60 |
59
|
ad2antrr |
|
61 |
|
simplr |
|
62 |
42
|
ad2antrr |
|
63 |
3 53
|
mgpplusg |
|
64 |
43 4 63
|
mulgnn0p1 |
|
65 |
60 61 62 64
|
syl3anc |
|
66 |
49
|
ad2antrr |
|
67 |
61
|
nn0cnd |
|
68 |
|
1cnd |
|
69 |
66 67 68
|
adddid |
|
70 |
66
|
mulridd |
|
71 |
70
|
oveq2d |
|
72 |
69 71
|
eqtrd |
|
73 |
72
|
fveq2d |
|
74 |
57 65 73
|
3eltr4d |
|
75 |
11 15 19 23 52 74
|
nn0indd |
|
76 |
6 75
|
mpdan |
|