Metamath Proof Explorer


Theorem midexlem

Description: Lemma for the existence of a middle point. Lemma 7.25 of Schwabhauser p. 55. This proof of the existence of a midpoint requires the existence of a third point C equidistant to A and B This condition will be removed later. Because the operation notation ( A ( midGG ) B ) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation B = ( MA ) has to be used. See mideu for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
midexlem.m M = S x
midexlem.a φ A P
midexlem.b φ B P
midexlem.c φ C P
midexlem.1 φ C - ˙ A = C - ˙ B
Assertion midexlem φ x P B = M A

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 midexlem.m M = S x
8 midexlem.a φ A P
9 midexlem.b φ B P
10 midexlem.c φ C P
11 midexlem.1 φ C - ˙ A = C - ˙ B
12 fveq2 x = C S x = S C
13 7 12 eqtrid x = C M = S C
14 13 fveq1d x = C M A = S C A
15 14 rspceeqv C P B = S C A x P B = M A
16 10 15 sylan φ B = S C A x P B = M A
17 16 adantlr φ C A L B A = B B = S C A x P B = M A
18 eqid S A = S A
19 1 2 3 4 5 6 8 18 mircinv φ S A A = A
20 19 adantr φ A = B S A A = A
21 simpr φ A = B A = B
22 20 21 eqtr2d φ A = B B = S A A
23 fveq2 x = A S x = S A
24 7 23 eqtrid x = A M = S A
25 24 fveq1d x = A M A = S A A
26 25 rspceeqv A P B = S A A x P B = M A
27 8 22 26 syl2an2r φ A = B x P B = M A
28 27 adantlr φ C A L B A = B A = B x P B = M A
29 6 adantr φ C A L B A = B G 𝒢 Tarski
30 eqid S C = S C
31 8 adantr φ C A L B A = B A P
32 9 adantr φ C A L B A = B B P
33 10 adantr φ C A L B A = B C P
34 simpr φ C A L B A = B C A L B A = B
35 11 adantr φ C A L B A = B C - ˙ A = C - ˙ B
36 1 2 3 4 5 29 30 31 32 33 34 35 colmid φ C A L B A = B B = S C A A = B
37 17 28 36 mpjaodan φ C A L B A = B x P B = M A
38 6 adantr φ ¬ C A L B A = B G 𝒢 Tarski
39 38 ad2antrr φ ¬ C A L B A = B p P A C I p A p G 𝒢 Tarski
40 39 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p G 𝒢 Tarski
41 40 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p G 𝒢 Tarski
42 41 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C G 𝒢 Tarski
43 simprl φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C x P
44 8 adantr φ ¬ C A L B A = B A P
45 44 ad2antrr φ ¬ C A L B A = B p P A C I p A p A P
46 45 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p A P
47 46 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p A P
48 47 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C A P
49 9 ad3antrrr φ ¬ C A L B A = B p P A C I p A p B P
50 49 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p B P
51 50 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p B P
52 51 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C B P
53 42 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ G 𝒢 Tarski
54 simpllr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C r P
55 54 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r P
56 10 adantr φ ¬ C A L B A = B C P
57 56 ad2antrr φ ¬ C A L B A = B p P A C I p A p C P
58 57 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p C P
59 58 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p C P
60 59 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C C P
61 60 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ C P
62 43 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ x P
63 eqid 𝒢 G = 𝒢 G
64 52 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B P
65 48 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A P
66 simpr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r = A r = A
67 9 adantr φ ¬ C A L B A = B B P
68 simpr φ ¬ C A L B A = B ¬ C A L B A = B
69 1 3 4 38 56 44 67 68 ncolne1 φ ¬ C A L B A = B C A
70 69 ad7antr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C C A
71 70 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ C A
72 71 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r = A C A
73 72 necomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r = A A C
74 66 73 eqnetrd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r = A r C
75 53 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A G 𝒢 Tarski
76 55 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A r P
77 65 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A A P
78 61 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A C P
79 simplr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p q P
80 79 ad3antrrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C q P
81 80 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q P
82 81 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A q P
83 68 ad9antr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ C A L B A = B
84 1 4 3 53 65 64 61 83 ncolrot2 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ B C L A C = A
85 6 adantr φ C B L A B = A G 𝒢 Tarski
86 9 adantr φ C B L A B = A B P
87 8 adantr φ C B L A B = A A P
88 10 adantr φ C B L A B = A C P
89 simpr φ C B L A B = A C B L A B = A
90 1 4 3 85 86 87 88 89 colcom φ C B L A B = A C A L B A = B
91 90 stoic1a φ ¬ C A L B A = B ¬ C B L A B = A
92 91 ad9antr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ C B L A B = A
93 1 3 4 53 61 64 65 92 ncolne1 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ C B
94 93 necomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B C
95 simprl φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p B C I q
96 95 ad3antrrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C B C I q
97 96 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B C I q
98 1 3 4 53 61 64 81 93 97 btwnlng3 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q C L B
99 1 3 4 53 64 61 81 94 98 lncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q B L C
100 53 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C G 𝒢 Tarski
101 61 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C C P
102 64 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C B P
103 97 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C B C I q
104 simpr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C q = C
105 104 oveq2d φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C C I q = C I C
106 103 105 eleqtrd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C B C I C
107 1 2 3 100 101 102 106 axtgbtwnid φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C C = B
108 93 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C C B
109 108 neneqd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q = C ¬ C = B
110 107 109 pm2.65da φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ q = C
111 110 neqned φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q C
112 1 3 4 53 64 61 65 81 84 99 111 ncolncol φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ q C L A C = A
113 1 4 3 53 61 65 81 112 ncolcom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ q A L C A = C
114 113 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A ¬ q A L C A = C
115 simp-4r φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p p P
116 115 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p p P
117 116 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C p P
118 117 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ p P
119 simp-4r φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C B C I q B - ˙ q = A - ˙ p
120 119 simprd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C B - ˙ q = A - ˙ p
121 120 eqcomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C A - ˙ p = B - ˙ q
122 121 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A - ˙ p = B - ˙ q
123 1 2 3 53 65 118 64 81 122 tgcgrcomlr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ p - ˙ A = q - ˙ B
124 simpllr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p A C I p A p
125 124 ad5antr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A C I p A p
126 125 simprd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A p
127 126 necomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ p A
128 1 2 3 53 118 65 81 64 123 127 tgcgrneq φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q B
129 1 3 4 53 61 64 65 81 92 98 128 ncolncol φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ q B L A B = A
130 1 3 4 53 81 64 65 129 ncolne2 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q A
131 130 necomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A q
132 simp-4r φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A I q r B I p
133 132 simpld φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A I q
134 1 3 4 53 65 81 55 131 133 btwnlng1 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A L q
135 1 3 4 53 81 65 55 130 134 lncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r q L A
136 135 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A r q L A
137 simpr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A r A
138 1 3 4 75 82 77 78 76 114 136 137 ncolncol φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A ¬ r A L C A = C
139 1 3 4 75 76 77 78 138 ncolne2 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A r C
140 74 139 pm2.61dane φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r C
141 simpllr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ x P x A I B x r I C
142 141 simprd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ x A I B x r I C
143 142 simprd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ x r I C
144 1 4 3 53 55 62 61 143 btwncolg3 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ C r L x r = x
145 simplr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s P
146 simplr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C r A I q r B I p
147 146 simprd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C r B I p
148 147 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r B I p
149 simprl φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s A I q
150 124 simpld φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p A C I p
151 150 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p A C I p
152 151 adantr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C A C I p
153 11 ad8antr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C C - ˙ A = C - ˙ B
154 153 eqcomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C C - ˙ B = C - ˙ A
155 1 2 3 42 48 52 axtgcgrrflx φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C A - ˙ B = B - ˙ A
156 1 2 3 42 60 48 117 60 52 80 52 48 70 152 96 153 121 154 155 axtg5seg φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C p - ˙ B = q - ˙ A
157 1 2 3 42 117 52 80 48 156 tgcgrcomlr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C B - ˙ p = A - ˙ q
158 157 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B - ˙ p = A - ˙ q
159 simprr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩
160 1 2 3 63 53 64 55 118 65 145 81 159 cgr3simp2 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r - ˙ p = s - ˙ q
161 1 2 3 53 64 65 axtgcgrrflx φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B - ˙ A = A - ˙ B
162 1 2 3 53 64 55 118 65 65 145 81 64 148 149 158 160 161 123 tgifscgr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r - ˙ A = s - ˙ B
163 simp-10l φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ φ
164 125 simpld φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A C I p
165 1 3 4 53 61 65 118 71 164 btwnlng3 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ p C L A
166 1 3 4 53 61 65 64 118 83 165 127 ncolncol φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ p A L B A = B
167 6 ad2antrr φ p P B p L A p = A G 𝒢 Tarski
168 simplr φ p P B p L A p = A p P
169 8 ad2antrr φ p P B p L A p = A A P
170 9 ad2antrr φ p P B p L A p = A B P
171 simpr φ p P B p L A p = A B p L A p = A
172 1 4 3 167 168 169 170 171 colrot1 φ p P B p L A p = A p A L B A = B
173 172 stoic1a φ p P ¬ p A L B A = B ¬ B p L A p = A
174 163 118 166 173 syl21anc φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ B p L A p = A
175 1 3 4 53 118 65 64 166 ncolne2 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ p B
176 175 necomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B p
177 176 neneqd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ B = p
178 1 4 3 53 65 81 55 133 btwncolg1 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r A L q A = q
179 1 2 3 53 55 65 145 64 162 tgcgrcomlr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A - ˙ r = B - ˙ s
180 120 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B - ˙ q = A - ˙ p
181 1 2 3 53 118 81 axtgcgrrflx φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ p - ˙ q = q - ˙ p
182 1 2 3 53 64 55 118 81 65 145 81 118 148 149 158 160 180 181 tgifscgr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r - ˙ q = s - ˙ p
183 1 2 3 53 65 145 81 149 tgbtwncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s q I A
184 1 2 3 42 52 54 117 147 tgbtwncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C r p I B
185 184 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r p I B
186 160 eqcomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s - ˙ q = r - ˙ p
187 1 2 3 53 145 81 55 118 186 tgcgrcomlr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q - ˙ s = p - ˙ r
188 1 2 3 63 53 64 55 118 65 145 81 159 cgr3simp1 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B - ˙ r = A - ˙ s
189 188 eqcomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ A - ˙ s = B - ˙ r
190 1 2 3 53 65 145 64 55 189 tgcgrcomlr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s - ˙ A = r - ˙ B
191 1 2 3 53 81 145 65 118 55 64 183 185 187 190 tgcgrextend φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ q - ˙ A = p - ˙ B
192 1 2 63 53 65 55 81 64 145 118 179 182 191 trgcgr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ⟨“ Arq ”⟩ 𝒢 G ⟨“ Bsp ”⟩
193 1 4 3 53 65 55 81 63 64 145 118 178 192 lnxfr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s B L p B = p
194 193 orcomd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ B = p s B L p
195 194 ord φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ ¬ B = p s B L p
196 177 195 mpd φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s B L p
197 1 3 4 53 64 118 55 176 148 btwnlng1 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r B L p
198 1 3 4 53 65 81 145 131 149 btwnlng1 φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s A L q
199 1 3 4 53 64 118 65 81 174 196 197 198 134 tglineinteq φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s = r
200 199 oveq1d φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ s - ˙ B = r - ˙ B
201 162 200 eqtr2d φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ r - ˙ B = r - ˙ A
202 154 ad2antrr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ C - ˙ B = C - ˙ A
203 1 4 3 53 55 61 62 63 64 65 2 140 144 201 202 lncgr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩ x - ˙ B = x - ˙ A
204 1 2 3 63 42 52 54 117 48 80 147 157 tgcgrxfr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C s P s A I q ⟨“ Brp ”⟩ 𝒢 G ⟨“ Asq ”⟩
205 203 204 r19.29a φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C x - ˙ B = x - ˙ A
206 simprrl φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C x A I B
207 1 2 3 42 48 43 52 206 tgbtwncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C x B I A
208 1 2 3 4 5 42 43 7 48 52 205 207 ismir φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C B = M A
209 simplr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p r P
210 simprr φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p r B I p
211 1 2 3 41 59 51 116 47 209 151 210 axtgpasch φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P x A I B x r I C
212 208 211 reximddv φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p x P B = M A
213 1 2 3 40 58 46 115 150 tgbtwncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p A p I C
214 1 2 3 40 58 50 79 95 tgbtwncom φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p B q I C
215 1 2 3 40 115 79 58 46 50 213 214 axtgpasch φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p r P r A I q r B I p
216 212 215 r19.29a φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p x P B = M A
217 simplr φ ¬ C A L B A = B p P A C I p A p p P
218 1 2 3 39 57 49 45 217 axtgsegcon φ ¬ C A L B A = B p P A C I p A p q P B C I q B - ˙ q = A - ˙ p
219 216 218 r19.29a φ ¬ C A L B A = B p P A C I p A p x P B = M A
220 1 fvexi P V
221 220 a1i φ ¬ C A L B A = B P V
222 221 56 44 69 nehash2 φ ¬ C A L B A = B 2 P
223 1 2 3 38 56 44 222 tgbtwndiff φ ¬ C A L B A = B p P A C I p A p
224 219 223 r19.29a φ ¬ C A L B A = B x P B = M A
225 37 224 pm2.61dan φ x P B = M A