Metamath Proof Explorer


Theorem mulgt0sr

Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion mulgt0sr 0𝑹<𝑹A0𝑹<𝑹B0𝑹<𝑹A𝑹B

Proof

Step Hyp Ref Expression
1 ltrelsr <𝑹𝑹×𝑹
2 1 brel 0𝑹<𝑹A0𝑹𝑹A𝑹
3 2 simprd 0𝑹<𝑹AA𝑹
4 1 brel 0𝑹<𝑹B0𝑹𝑹B𝑹
5 4 simprd 0𝑹<𝑹BB𝑹
6 3 5 anim12i 0𝑹<𝑹A0𝑹<𝑹BA𝑹B𝑹
7 df-nr 𝑹=𝑷×𝑷/~𝑹
8 breq2 xy~𝑹=A0𝑹<𝑹xy~𝑹0𝑹<𝑹A
9 8 anbi1d xy~𝑹=A0𝑹<𝑹xy~𝑹0𝑹<𝑹zw~𝑹0𝑹<𝑹A0𝑹<𝑹zw~𝑹
10 oveq1 xy~𝑹=Axy~𝑹𝑹zw~𝑹=A𝑹zw~𝑹
11 10 breq2d xy~𝑹=A0𝑹<𝑹xy~𝑹𝑹zw~𝑹0𝑹<𝑹A𝑹zw~𝑹
12 9 11 imbi12d xy~𝑹=A0𝑹<𝑹xy~𝑹0𝑹<𝑹zw~𝑹0𝑹<𝑹xy~𝑹𝑹zw~𝑹0𝑹<𝑹A0𝑹<𝑹zw~𝑹0𝑹<𝑹A𝑹zw~𝑹
13 breq2 zw~𝑹=B0𝑹<𝑹zw~𝑹0𝑹<𝑹B
14 13 anbi2d zw~𝑹=B0𝑹<𝑹A0𝑹<𝑹zw~𝑹0𝑹<𝑹A0𝑹<𝑹B
15 oveq2 zw~𝑹=BA𝑹zw~𝑹=A𝑹B
16 15 breq2d zw~𝑹=B0𝑹<𝑹A𝑹zw~𝑹0𝑹<𝑹A𝑹B
17 14 16 imbi12d zw~𝑹=B0𝑹<𝑹A0𝑹<𝑹zw~𝑹0𝑹<𝑹A𝑹zw~𝑹0𝑹<𝑹A0𝑹<𝑹B0𝑹<𝑹A𝑹B
18 gt0srpr 0𝑹<𝑹xy~𝑹y<𝑷x
19 gt0srpr 0𝑹<𝑹zw~𝑹w<𝑷z
20 18 19 anbi12i 0𝑹<𝑹xy~𝑹0𝑹<𝑹zw~𝑹y<𝑷xw<𝑷z
21 simprr x𝑷y𝑷z𝑷w𝑷w𝑷
22 mulclpr x𝑷z𝑷x𝑷z𝑷
23 mulclpr y𝑷w𝑷y𝑷w𝑷
24 addclpr x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
25 22 23 24 syl2an x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
26 25 an4s x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
27 ltexpri y<𝑷xv𝑷y+𝑷v=x
28 ltexpri w<𝑷zu𝑷w+𝑷u=z
29 mulclpr v𝑷w𝑷v𝑷w𝑷
30 oveq12 y+𝑷v=xw+𝑷u=zy+𝑷v𝑷w+𝑷u=x𝑷z
31 30 oveq1d y+𝑷v=xw+𝑷u=zy+𝑷v𝑷w+𝑷u+𝑷y𝑷w+𝑷v𝑷w=x𝑷z+𝑷y𝑷w+𝑷v𝑷w
32 distrpr y𝑷w+𝑷u=y𝑷w+𝑷y𝑷u
33 oveq2 w+𝑷u=zy𝑷w+𝑷u=y𝑷z
34 32 33 eqtr3id w+𝑷u=zy𝑷w+𝑷y𝑷u=y𝑷z
35 34 oveq1d w+𝑷u=zy𝑷w+𝑷y𝑷u+𝑷v𝑷w+𝑷v𝑷u=y𝑷z+𝑷v𝑷w+𝑷v𝑷u
36 vex yV
37 vex vV
38 vex wV
39 mulcompr f𝑷g=g𝑷f
40 distrpr f𝑷g+𝑷h=f𝑷g+𝑷f𝑷h
41 36 37 38 39 40 caovdir y+𝑷v𝑷w=y𝑷w+𝑷v𝑷w
42 vex uV
43 36 37 42 39 40 caovdir y+𝑷v𝑷u=y𝑷u+𝑷v𝑷u
44 41 43 oveq12i y+𝑷v𝑷w+𝑷y+𝑷v𝑷u=y𝑷w+𝑷v𝑷w+𝑷y𝑷u+𝑷v𝑷u
45 distrpr y+𝑷v𝑷w+𝑷u=y+𝑷v𝑷w+𝑷y+𝑷v𝑷u
46 ovex y𝑷wV
47 ovex y𝑷uV
48 ovex v𝑷wV
49 addcompr f+𝑷g=g+𝑷f
50 addasspr f+𝑷g+𝑷h=f+𝑷g+𝑷h
51 ovex v𝑷uV
52 46 47 48 49 50 51 caov4 y𝑷w+𝑷y𝑷u+𝑷v𝑷w+𝑷v𝑷u=y𝑷w+𝑷v𝑷w+𝑷y𝑷u+𝑷v𝑷u
53 44 45 52 3eqtr4i y+𝑷v𝑷w+𝑷u=y𝑷w+𝑷y𝑷u+𝑷v𝑷w+𝑷v𝑷u
54 ovex y𝑷zV
55 48 54 51 49 50 caov12 v𝑷w+𝑷y𝑷z+𝑷v𝑷u=y𝑷z+𝑷v𝑷w+𝑷v𝑷u
56 35 53 55 3eqtr4g w+𝑷u=zy+𝑷v𝑷w+𝑷u=v𝑷w+𝑷y𝑷z+𝑷v𝑷u
57 oveq1 y+𝑷v=xy+𝑷v𝑷w=x𝑷w
58 41 57 eqtr3id y+𝑷v=xy𝑷w+𝑷v𝑷w=x𝑷w
59 56 58 oveqan12rd y+𝑷v=xw+𝑷u=zy+𝑷v𝑷w+𝑷u+𝑷y𝑷w+𝑷v𝑷w=v𝑷w+𝑷y𝑷z+𝑷v𝑷u+𝑷x𝑷w
60 31 59 eqtr3d y+𝑷v=xw+𝑷u=zx𝑷z+𝑷y𝑷w+𝑷v𝑷w=v𝑷w+𝑷y𝑷z+𝑷v𝑷u+𝑷x𝑷w
61 addasspr x𝑷z+𝑷y𝑷w+𝑷v𝑷w=x𝑷z+𝑷y𝑷w+𝑷v𝑷w
62 addcompr x𝑷z+𝑷y𝑷w+𝑷v𝑷w=v𝑷w+𝑷x𝑷z+𝑷y𝑷w
63 61 62 eqtr3i x𝑷z+𝑷y𝑷w+𝑷v𝑷w=v𝑷w+𝑷x𝑷z+𝑷y𝑷w
64 addasspr v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u=v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u
65 ovex y𝑷z+𝑷v𝑷uV
66 ovex x𝑷wV
67 48 65 66 49 50 caov32 v𝑷w+𝑷y𝑷z+𝑷v𝑷u+𝑷x𝑷w=v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u
68 addasspr x𝑷w+𝑷y𝑷z+𝑷v𝑷u=x𝑷w+𝑷y𝑷z+𝑷v𝑷u
69 68 oveq2i v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u=v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u
70 64 67 69 3eqtr4i v𝑷w+𝑷y𝑷z+𝑷v𝑷u+𝑷x𝑷w=v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u
71 60 63 70 3eqtr3g y+𝑷v=xw+𝑷u=zv𝑷w+𝑷x𝑷z+𝑷y𝑷w=v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u
72 addcanpr v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷v𝑷w+𝑷x𝑷z+𝑷y𝑷w=v𝑷w+𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷ux𝑷z+𝑷y𝑷w=x𝑷w+𝑷y𝑷z+𝑷v𝑷u
73 71 72 syl5 v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷y+𝑷v=xw+𝑷u=zx𝑷z+𝑷y𝑷w=x𝑷w+𝑷y𝑷z+𝑷v𝑷u
74 eqcom x𝑷z+𝑷y𝑷w=x𝑷w+𝑷y𝑷z+𝑷v𝑷ux𝑷w+𝑷y𝑷z+𝑷v𝑷u=x𝑷z+𝑷y𝑷w
75 ltaddpr2 x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z+𝑷v𝑷u=x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
76 74 75 biimtrid x𝑷z+𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w=x𝑷w+𝑷y𝑷z+𝑷v𝑷ux𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
77 76 adantl v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w=x𝑷w+𝑷y𝑷z+𝑷v𝑷ux𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
78 73 77 syld v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷y+𝑷v=xw+𝑷u=zx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
79 29 78 sylan v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷y+𝑷v=xw+𝑷u=zx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
80 79 a1d v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷u𝑷y+𝑷v=xw+𝑷u=zx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
81 80 exp4a v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷u𝑷y+𝑷v=xw+𝑷u=zx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
82 81 com34 v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷u𝑷w+𝑷u=zy+𝑷v=xx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
83 82 rexlimdv v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷u𝑷w+𝑷u=zy+𝑷v=xx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
84 83 expl v𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷u𝑷w+𝑷u=zy+𝑷v=xx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
85 84 com24 v𝑷y+𝑷v=xu𝑷w+𝑷u=zw𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
86 85 rexlimiv v𝑷y+𝑷v=xu𝑷w+𝑷u=zw𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
87 27 28 86 syl2im y<𝑷xw<𝑷zw𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
88 87 imp y<𝑷xw<𝑷zw𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
89 88 com12 w𝑷x𝑷z+𝑷y𝑷w𝑷y<𝑷xw<𝑷zx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
90 21 26 89 syl2anc x𝑷y𝑷z𝑷w𝑷y<𝑷xw<𝑷zx𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
91 mulsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹𝑹zw~𝑹=x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹
92 91 breq2d x𝑷y𝑷z𝑷w𝑷0𝑹<𝑹xy~𝑹𝑹zw~𝑹0𝑹<𝑹x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹
93 gt0srpr 0𝑹<𝑹x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹x𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
94 92 93 bitrdi x𝑷y𝑷z𝑷w𝑷0𝑹<𝑹xy~𝑹𝑹zw~𝑹x𝑷w+𝑷y𝑷z<𝑷x𝑷z+𝑷y𝑷w
95 90 94 sylibrd x𝑷y𝑷z𝑷w𝑷y<𝑷xw<𝑷z0𝑹<𝑹xy~𝑹𝑹zw~𝑹
96 20 95 biimtrid x𝑷y𝑷z𝑷w𝑷0𝑹<𝑹xy~𝑹0𝑹<𝑹zw~𝑹0𝑹<𝑹xy~𝑹𝑹zw~𝑹
97 7 12 17 96 2ecoptocl A𝑹B𝑹0𝑹<𝑹A0𝑹<𝑹B0𝑹<𝑹A𝑹B
98 6 97 mpcom 0𝑹<𝑹A0𝑹<𝑹B0𝑹<𝑹A𝑹B