| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neibastop1.1 |  | 
						
							| 2 |  | neibastop1.2 |  | 
						
							| 3 |  | neibastop1.3 |  | 
						
							| 4 |  | neibastop1.4 |  | 
						
							| 5 |  | neibastop1.5 |  | 
						
							| 6 |  | neibastop1.6 |  | 
						
							| 7 | 1 2 3 4 | neibastop1 |  | 
						
							| 8 |  | topontop |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 | neii1 |  | 
						
							| 13 | 10 12 | sylan |  | 
						
							| 14 |  | toponuni |  | 
						
							| 15 | 7 14 | syl |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 | 13 16 | sseqtrrd |  | 
						
							| 18 |  | neii2 |  | 
						
							| 19 | 10 18 | sylan |  | 
						
							| 20 |  | pweq |  | 
						
							| 21 | 20 | ineq2d |  | 
						
							| 22 | 21 | neeq1d |  | 
						
							| 23 | 22 | raleqbi1dv |  | 
						
							| 24 | 23 4 | elrab2 |  | 
						
							| 25 |  | simprrr |  | 
						
							| 26 | 25 | sspwd |  | 
						
							| 27 |  | sslin |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 |  | simprrl |  | 
						
							| 30 |  | snssg |  | 
						
							| 31 | 30 | ad3antlr |  | 
						
							| 32 | 29 31 | mpbird |  | 
						
							| 33 |  | fveq2 |  | 
						
							| 34 | 33 | ineq1d |  | 
						
							| 35 | 34 | neeq1d |  | 
						
							| 36 | 35 | rspcv |  | 
						
							| 37 | 32 36 | syl |  | 
						
							| 38 |  | ssn0 |  | 
						
							| 39 | 28 37 38 | syl6an |  | 
						
							| 40 | 39 | expr |  | 
						
							| 41 | 40 | com23 |  | 
						
							| 42 | 41 | expimpd |  | 
						
							| 43 | 24 42 | biimtrid |  | 
						
							| 44 | 43 | rexlimdv |  | 
						
							| 45 | 19 44 | mpd |  | 
						
							| 46 | 17 45 | jca |  | 
						
							| 47 | 46 | ex |  | 
						
							| 48 |  | n0 |  | 
						
							| 49 |  | elin |  | 
						
							| 50 |  | simprl |  | 
						
							| 51 | 15 | ad2antrr |  | 
						
							| 52 | 50 51 | sseqtrd |  | 
						
							| 53 | 1 | ad2antrr |  | 
						
							| 54 | 2 | ad2antrr |  | 
						
							| 55 |  | simpll |  | 
						
							| 56 | 55 3 | sylan |  | 
						
							| 57 | 55 5 | sylan |  | 
						
							| 58 | 55 6 | sylan |  | 
						
							| 59 |  | simplr |  | 
						
							| 60 |  | simprrl |  | 
						
							| 61 |  | simprrr |  | 
						
							| 62 | 61 | elpwid |  | 
						
							| 63 |  | fveq2 |  | 
						
							| 64 | 63 | ineq1d |  | 
						
							| 65 | 64 | cbviunv |  | 
						
							| 66 |  | pweq |  | 
						
							| 67 | 66 | ineq2d |  | 
						
							| 68 | 67 | iuneq2d |  | 
						
							| 69 | 65 68 | eqtrid |  | 
						
							| 70 | 69 | cbviunv |  | 
						
							| 71 | 70 | mpteq2i |  | 
						
							| 72 |  | rdgeq1 |  | 
						
							| 73 | 71 72 | ax-mp |  | 
						
							| 74 | 73 | reseq1i |  | 
						
							| 75 |  | pweq |  | 
						
							| 76 | 75 | ineq2d |  | 
						
							| 77 | 76 | neeq1d |  | 
						
							| 78 | 77 | cbvrexvw |  | 
						
							| 79 |  | fveq2 |  | 
						
							| 80 | 79 | ineq1d |  | 
						
							| 81 | 80 | neeq1d |  | 
						
							| 82 | 81 | rexbidv |  | 
						
							| 83 | 78 82 | bitrid |  | 
						
							| 84 | 83 | cbvrabv |  | 
						
							| 85 | 53 54 56 4 57 58 59 50 60 62 74 84 | neibastop2lem |  | 
						
							| 86 | 9 | ad2antrr |  | 
						
							| 87 | 59 51 | eleqtrd |  | 
						
							| 88 | 11 | isneip |  | 
						
							| 89 | 86 87 88 | syl2anc |  | 
						
							| 90 | 52 85 89 | mpbir2and |  | 
						
							| 91 | 90 | expr |  | 
						
							| 92 | 49 91 | biimtrid |  | 
						
							| 93 | 92 | exlimdv |  | 
						
							| 94 | 48 93 | biimtrid |  | 
						
							| 95 | 94 | expimpd |  | 
						
							| 96 | 47 95 | impbid |  |