Metamath Proof Explorer


Theorem neibastop2

Description: In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses neibastop1.1 φXV
neibastop1.2 φF:X𝒫𝒫X
neibastop1.3 φxXvFxwFxFx𝒫vw
neibastop1.4 J=o𝒫X|xoFx𝒫o
neibastop1.5 φxXvFxxv
neibastop1.6 φxXvFxtFxytFy𝒫v
Assertion neibastop2 φPXNneiJPNXFP𝒫N

Proof

Step Hyp Ref Expression
1 neibastop1.1 φXV
2 neibastop1.2 φF:X𝒫𝒫X
3 neibastop1.3 φxXvFxwFxFx𝒫vw
4 neibastop1.4 J=o𝒫X|xoFx𝒫o
5 neibastop1.5 φxXvFxxv
6 neibastop1.6 φxXvFxtFxytFy𝒫v
7 1 2 3 4 neibastop1 φJTopOnX
8 topontop JTopOnXJTop
9 7 8 syl φJTop
10 9 adantr φPXJTop
11 eqid J=J
12 11 neii1 JTopNneiJPNJ
13 10 12 sylan φPXNneiJPNJ
14 toponuni JTopOnXX=J
15 7 14 syl φX=J
16 15 ad2antrr φPXNneiJPX=J
17 13 16 sseqtrrd φPXNneiJPNX
18 neii2 JTopNneiJPyJPyyN
19 10 18 sylan φPXNneiJPyJPyyN
20 pweq o=y𝒫o=𝒫y
21 20 ineq2d o=yFx𝒫o=Fx𝒫y
22 21 neeq1d o=yFx𝒫oFx𝒫y
23 22 raleqbi1dv o=yxoFx𝒫oxyFx𝒫y
24 23 4 elrab2 yJy𝒫XxyFx𝒫y
25 simprrr φPXNneiJPy𝒫XPyyNyN
26 25 sspwd φPXNneiJPy𝒫XPyyN𝒫y𝒫N
27 sslin 𝒫y𝒫NFP𝒫yFP𝒫N
28 26 27 syl φPXNneiJPy𝒫XPyyNFP𝒫yFP𝒫N
29 simprrl φPXNneiJPy𝒫XPyyNPy
30 snssg PXPyPy
31 30 ad3antlr φPXNneiJPy𝒫XPyyNPyPy
32 29 31 mpbird φPXNneiJPy𝒫XPyyNPy
33 fveq2 x=PFx=FP
34 33 ineq1d x=PFx𝒫y=FP𝒫y
35 34 neeq1d x=PFx𝒫yFP𝒫y
36 35 rspcv PyxyFx𝒫yFP𝒫y
37 32 36 syl φPXNneiJPy𝒫XPyyNxyFx𝒫yFP𝒫y
38 ssn0 FP𝒫yFP𝒫NFP𝒫yFP𝒫N
39 28 37 38 syl6an φPXNneiJPy𝒫XPyyNxyFx𝒫yFP𝒫N
40 39 expr φPXNneiJPy𝒫XPyyNxyFx𝒫yFP𝒫N
41 40 com23 φPXNneiJPy𝒫XxyFx𝒫yPyyNFP𝒫N
42 41 expimpd φPXNneiJPy𝒫XxyFx𝒫yPyyNFP𝒫N
43 24 42 biimtrid φPXNneiJPyJPyyNFP𝒫N
44 43 rexlimdv φPXNneiJPyJPyyNFP𝒫N
45 19 44 mpd φPXNneiJPFP𝒫N
46 17 45 jca φPXNneiJPNXFP𝒫N
47 46 ex φPXNneiJPNXFP𝒫N
48 n0 FP𝒫NssFP𝒫N
49 elin sFP𝒫NsFPs𝒫N
50 simprl φPXNXsFPs𝒫NNX
51 15 ad2antrr φPXNXsFPs𝒫NX=J
52 50 51 sseqtrd φPXNXsFPs𝒫NNJ
53 1 ad2antrr φPXNXsFPs𝒫NXV
54 2 ad2antrr φPXNXsFPs𝒫NF:X𝒫𝒫X
55 simpll φPXNXsFPs𝒫Nφ
56 55 3 sylan φPXNXsFPs𝒫NxXvFxwFxFx𝒫vw
57 55 5 sylan φPXNXsFPs𝒫NxXvFxxv
58 55 6 sylan φPXNXsFPs𝒫NxXvFxtFxytFy𝒫v
59 simplr φPXNXsFPs𝒫NPX
60 simprrl φPXNXsFPs𝒫NsFP
61 simprrr φPXNXsFPs𝒫Ns𝒫N
62 61 elpwid φPXNXsFPs𝒫NsN
63 fveq2 n=xFn=Fx
64 63 ineq1d n=xFn𝒫b=Fx𝒫b
65 64 cbviunv nXFn𝒫b=xXFx𝒫b
66 pweq b=z𝒫b=𝒫z
67 66 ineq2d b=zFx𝒫b=Fx𝒫z
68 67 iuneq2d b=zxXFx𝒫b=xXFx𝒫z
69 65 68 eqtrid b=znXFn𝒫b=xXFx𝒫z
70 69 cbviunv banXFn𝒫b=zaxXFx𝒫z
71 70 mpteq2i aVbanXFn𝒫b=aVzaxXFx𝒫z
72 rdgeq1 aVbanXFn𝒫b=aVzaxXFx𝒫zrecaVbanXFn𝒫bs=recaVzaxXFx𝒫zs
73 71 72 ax-mp recaVbanXFn𝒫bs=recaVzaxXFx𝒫zs
74 73 reseq1i recaVbanXFn𝒫bsω=recaVzaxXFx𝒫zsω
75 pweq g=f𝒫g=𝒫f
76 75 ineq2d g=fFw𝒫g=Fw𝒫f
77 76 neeq1d g=fFw𝒫gFw𝒫f
78 77 cbvrexvw granrecaVbanXFn𝒫bsωFw𝒫gfranrecaVbanXFn𝒫bsωFw𝒫f
79 fveq2 w=yFw=Fy
80 79 ineq1d w=yFw𝒫f=Fy𝒫f
81 80 neeq1d w=yFw𝒫fFy𝒫f
82 81 rexbidv w=yfranrecaVbanXFn𝒫bsωFw𝒫ffranrecaVbanXFn𝒫bsωFy𝒫f
83 78 82 bitrid w=ygranrecaVbanXFn𝒫bsωFw𝒫gfranrecaVbanXFn𝒫bsωFy𝒫f
84 83 cbvrabv wX|granrecaVbanXFn𝒫bsωFw𝒫g=yX|franrecaVbanXFn𝒫bsωFy𝒫f
85 53 54 56 4 57 58 59 50 60 62 74 84 neibastop2lem φPXNXsFPs𝒫NuJPuuN
86 9 ad2antrr φPXNXsFPs𝒫NJTop
87 59 51 eleqtrd φPXNXsFPs𝒫NPJ
88 11 isneip JTopPJNneiJPNJuJPuuN
89 86 87 88 syl2anc φPXNXsFPs𝒫NNneiJPNJuJPuuN
90 52 85 89 mpbir2and φPXNXsFPs𝒫NNneiJP
91 90 expr φPXNXsFPs𝒫NNneiJP
92 49 91 biimtrid φPXNXsFP𝒫NNneiJP
93 92 exlimdv φPXNXssFP𝒫NNneiJP
94 48 93 biimtrid φPXNXFP𝒫NNneiJP
95 94 expimpd φPXNXFP𝒫NNneiJP
96 47 95 impbid φPXNneiJPNXFP𝒫N