| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neibastop1.1 |
|
| 2 |
|
neibastop1.2 |
|
| 3 |
|
neibastop1.3 |
|
| 4 |
|
neibastop1.4 |
|
| 5 |
|
neibastop1.5 |
|
| 6 |
|
neibastop1.6 |
|
| 7 |
1 2 3 4
|
neibastop1 |
|
| 8 |
1 2 3 4 5 6
|
neibastop2 |
|
| 9 |
|
velpw |
|
| 10 |
9
|
anbi1i |
|
| 11 |
8 10
|
bitr4di |
|
| 12 |
11
|
eqabdv |
|
| 13 |
|
df-rab |
|
| 14 |
12 13
|
eqtr4di |
|
| 15 |
14
|
ralrimiva |
|
| 16 |
|
sneq |
|
| 17 |
16
|
fveq2d |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
ineq1d |
|
| 20 |
19
|
neeq1d |
|
| 21 |
20
|
rabbidv |
|
| 22 |
17 21
|
eqeq12d |
|
| 23 |
22
|
cbvralvw |
|
| 24 |
15 23
|
sylibr |
|
| 25 |
|
toponuni |
|
| 26 |
|
eqimss2 |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
sspwuni |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
29
|
ad2antlr |
|
| 31 |
|
sseqin2 |
|
| 32 |
30 31
|
sylib |
|
| 33 |
|
topontop |
|
| 34 |
33
|
ad3antlr |
|
| 35 |
|
eltop2 |
|
| 36 |
34 35
|
syl |
|
| 37 |
|
elpwi |
|
| 38 |
|
ssralv |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
adantl |
|
| 41 |
|
simprr |
|
| 42 |
41
|
eleq2d |
|
| 43 |
33
|
ad3antlr |
|
| 44 |
25
|
adantl |
|
| 45 |
44
|
sseq2d |
|
| 46 |
45
|
biimpa |
|
| 47 |
37 46
|
sylan2 |
|
| 48 |
47
|
sselda |
|
| 49 |
48
|
adantrr |
|
| 50 |
47
|
adantr |
|
| 51 |
|
eqid |
|
| 52 |
51
|
isneip |
|
| 53 |
52
|
baibd |
|
| 54 |
43 49 50 53
|
syl21anc |
|
| 55 |
|
pweq |
|
| 56 |
55
|
ineq2d |
|
| 57 |
56
|
neeq1d |
|
| 58 |
57
|
elrab3 |
|
| 59 |
58
|
ad2antlr |
|
| 60 |
42 54 59
|
3bitr3d |
|
| 61 |
60
|
expr |
|
| 62 |
61
|
ralimdva |
|
| 63 |
40 62
|
syld |
|
| 64 |
63
|
imp |
|
| 65 |
64
|
an32s |
|
| 66 |
|
ralbi |
|
| 67 |
65 66
|
syl |
|
| 68 |
36 67
|
bitrd |
|
| 69 |
68
|
rabbi2dva |
|
| 70 |
69 4
|
eqtr4di |
|
| 71 |
32 70
|
eqtr3d |
|
| 72 |
71
|
expl |
|
| 73 |
72
|
alrimiv |
|
| 74 |
|
eleq1 |
|
| 75 |
|
fveq2 |
|
| 76 |
75
|
fveq1d |
|
| 77 |
76
|
eqeq1d |
|
| 78 |
77
|
ralbidv |
|
| 79 |
74 78
|
anbi12d |
|
| 80 |
79
|
eqeu |
|
| 81 |
7 7 24 73 80
|
syl121anc |
|
| 82 |
|
df-reu |
|
| 83 |
81 82
|
sylibr |
|