Metamath Proof Explorer


Theorem nghmcn

Description: A normed group homomorphism is a continuous function. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nghmcn.j J=TopOpenS
nghmcn.k K=TopOpenT
Assertion nghmcn FSNGHomTFJCnK

Proof

Step Hyp Ref Expression
1 nghmcn.j J=TopOpenS
2 nghmcn.k K=TopOpenT
3 nghmghm FSNGHomTFSGrpHomT
4 eqid BaseS=BaseS
5 eqid BaseT=BaseT
6 4 5 ghmf FSGrpHomTF:BaseSBaseT
7 3 6 syl FSNGHomTF:BaseSBaseT
8 simprr FSNGHomTxBaseSr+r+
9 eqid SnormOpT=SnormOpT
10 9 nghmcl FSNGHomTSnormOpTF
11 nghmrcl1 FSNGHomTSNrmGrp
12 nghmrcl2 FSNGHomTTNrmGrp
13 9 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0SnormOpTF
14 11 12 3 13 syl3anc FSNGHomT0SnormOpTF
15 10 14 ge0p1rpd FSNGHomTSnormOpTF+1+
16 15 adantr FSNGHomTxBaseSr+SnormOpTF+1+
17 8 16 rpdivcld FSNGHomTxBaseSr+rSnormOpTF+1+
18 ngpms SNrmGrpSMetSp
19 11 18 syl FSNGHomTSMetSp
20 19 ad2antrr FSNGHomTxBaseSr+yBaseSSMetSp
21 simplrl FSNGHomTxBaseSr+yBaseSxBaseS
22 simpr FSNGHomTxBaseSr+yBaseSyBaseS
23 eqid distS=distS
24 4 23 mscl SMetSpxBaseSyBaseSxdistSy
25 20 21 22 24 syl3anc FSNGHomTxBaseSr+yBaseSxdistSy
26 8 adantr FSNGHomTxBaseSr+yBaseSr+
27 26 rpred FSNGHomTxBaseSr+yBaseSr
28 15 ad2antrr FSNGHomTxBaseSr+yBaseSSnormOpTF+1+
29 25 27 28 ltmuldiv2d FSNGHomTxBaseSr+yBaseSSnormOpTF+1xdistSy<rxdistSy<rSnormOpTF+1
30 ngpms TNrmGrpTMetSp
31 12 30 syl FSNGHomTTMetSp
32 31 ad2antrr FSNGHomTxBaseSr+yBaseSTMetSp
33 7 ad2antrr FSNGHomTxBaseSr+yBaseSF:BaseSBaseT
34 33 21 ffvelcdmd FSNGHomTxBaseSr+yBaseSFxBaseT
35 33 22 ffvelcdmd FSNGHomTxBaseSr+yBaseSFyBaseT
36 eqid distT=distT
37 5 36 mscl TMetSpFxBaseTFyBaseTFxdistTFy
38 32 34 35 37 syl3anc FSNGHomTxBaseSr+yBaseSFxdistTFy
39 10 ad2antrr FSNGHomTxBaseSr+yBaseSSnormOpTF
40 39 25 remulcld FSNGHomTxBaseSr+yBaseSSnormOpTFxdistSy
41 28 rpred FSNGHomTxBaseSr+yBaseSSnormOpTF+1
42 41 25 remulcld FSNGHomTxBaseSr+yBaseSSnormOpTF+1xdistSy
43 9 4 23 36 nmods FSNGHomTxBaseSyBaseSFxdistTFySnormOpTFxdistSy
44 43 3expa FSNGHomTxBaseSyBaseSFxdistTFySnormOpTFxdistSy
45 44 adantlrr FSNGHomTxBaseSr+yBaseSFxdistTFySnormOpTFxdistSy
46 msxms SMetSpS∞MetSp
47 20 46 syl FSNGHomTxBaseSr+yBaseSS∞MetSp
48 4 23 xmsge0 S∞MetSpxBaseSyBaseS0xdistSy
49 47 21 22 48 syl3anc FSNGHomTxBaseSr+yBaseS0xdistSy
50 39 lep1d FSNGHomTxBaseSr+yBaseSSnormOpTFSnormOpTF+1
51 39 41 25 49 50 lemul1ad FSNGHomTxBaseSr+yBaseSSnormOpTFxdistSySnormOpTF+1xdistSy
52 38 40 42 45 51 letrd FSNGHomTxBaseSr+yBaseSFxdistTFySnormOpTF+1xdistSy
53 lelttr FxdistTFySnormOpTF+1xdistSyrFxdistTFySnormOpTF+1xdistSySnormOpTF+1xdistSy<rFxdistTFy<r
54 38 42 27 53 syl3anc FSNGHomTxBaseSr+yBaseSFxdistTFySnormOpTF+1xdistSySnormOpTF+1xdistSy<rFxdistTFy<r
55 52 54 mpand FSNGHomTxBaseSr+yBaseSSnormOpTF+1xdistSy<rFxdistTFy<r
56 29 55 sylbird FSNGHomTxBaseSr+yBaseSxdistSy<rSnormOpTF+1FxdistTFy<r
57 21 22 ovresd FSNGHomTxBaseSr+yBaseSxdistSBaseS×BaseSy=xdistSy
58 57 breq1d FSNGHomTxBaseSr+yBaseSxdistSBaseS×BaseSy<rSnormOpTF+1xdistSy<rSnormOpTF+1
59 34 35 ovresd FSNGHomTxBaseSr+yBaseSFxdistTBaseT×BaseTFy=FxdistTFy
60 59 breq1d FSNGHomTxBaseSr+yBaseSFxdistTBaseT×BaseTFy<rFxdistTFy<r
61 56 58 60 3imtr4d FSNGHomTxBaseSr+yBaseSxdistSBaseS×BaseSy<rSnormOpTF+1FxdistTBaseT×BaseTFy<r
62 61 ralrimiva FSNGHomTxBaseSr+yBaseSxdistSBaseS×BaseSy<rSnormOpTF+1FxdistTBaseT×BaseTFy<r
63 breq2 s=rSnormOpTF+1xdistSBaseS×BaseSy<sxdistSBaseS×BaseSy<rSnormOpTF+1
64 63 rspceaimv rSnormOpTF+1+yBaseSxdistSBaseS×BaseSy<rSnormOpTF+1FxdistTBaseT×BaseTFy<rs+yBaseSxdistSBaseS×BaseSy<sFxdistTBaseT×BaseTFy<r
65 17 62 64 syl2anc FSNGHomTxBaseSr+s+yBaseSxdistSBaseS×BaseSy<sFxdistTBaseT×BaseTFy<r
66 65 ralrimivva FSNGHomTxBaseSr+s+yBaseSxdistSBaseS×BaseSy<sFxdistTBaseT×BaseTFy<r
67 eqid distSBaseS×BaseS=distSBaseS×BaseS
68 4 67 xmsxmet S∞MetSpdistSBaseS×BaseS∞MetBaseS
69 19 46 68 3syl FSNGHomTdistSBaseS×BaseS∞MetBaseS
70 msxms TMetSpT∞MetSp
71 eqid distTBaseT×BaseT=distTBaseT×BaseT
72 5 71 xmsxmet T∞MetSpdistTBaseT×BaseT∞MetBaseT
73 31 70 72 3syl FSNGHomTdistTBaseT×BaseT∞MetBaseT
74 eqid MetOpendistSBaseS×BaseS=MetOpendistSBaseS×BaseS
75 eqid MetOpendistTBaseT×BaseT=MetOpendistTBaseT×BaseT
76 74 75 metcn distSBaseS×BaseS∞MetBaseSdistTBaseT×BaseT∞MetBaseTFMetOpendistSBaseS×BaseSCnMetOpendistTBaseT×BaseTF:BaseSBaseTxBaseSr+s+yBaseSxdistSBaseS×BaseSy<sFxdistTBaseT×BaseTFy<r
77 69 73 76 syl2anc FSNGHomTFMetOpendistSBaseS×BaseSCnMetOpendistTBaseT×BaseTF:BaseSBaseTxBaseSr+s+yBaseSxdistSBaseS×BaseSy<sFxdistTBaseT×BaseTFy<r
78 7 66 77 mpbir2and FSNGHomTFMetOpendistSBaseS×BaseSCnMetOpendistTBaseT×BaseT
79 1 4 67 mstopn SMetSpJ=MetOpendistSBaseS×BaseS
80 19 79 syl FSNGHomTJ=MetOpendistSBaseS×BaseS
81 2 5 71 mstopn TMetSpK=MetOpendistTBaseT×BaseT
82 31 81 syl FSNGHomTK=MetOpendistTBaseT×BaseT
83 80 82 oveq12d FSNGHomTJCnK=MetOpendistSBaseS×BaseSCnMetOpendistTBaseT×BaseT
84 78 83 eleqtrrd FSNGHomTFJCnK