Metamath Proof Explorer


Theorem nmopcoi

Description: Upper bound for the norm of the composition of two bounded linear operators. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nmoptri.1 SBndLinOp
nmoptri.2 TBndLinOp
Assertion nmopcoi normopSTnormopSnormopT

Proof

Step Hyp Ref Expression
1 nmoptri.1 SBndLinOp
2 nmoptri.2 TBndLinOp
3 bdopln SBndLinOpSLinOp
4 1 3 ax-mp SLinOp
5 bdopln TBndLinOpTLinOp
6 2 5 ax-mp TLinOp
7 4 6 lnopcoi STLinOp
8 7 lnopfi ST:
9 nmopre SBndLinOpnormopS
10 1 9 ax-mp normopS
11 nmopre TBndLinOpnormopT
12 2 11 ax-mp normopT
13 10 12 remulcli normopSnormopT
14 13 rexri normopSnormopT*
15 nmopub ST:normopSnormopT*normopSTnormopSnormopTxnormx1normSTxnormopSnormopT
16 8 14 15 mp2an normopSTnormopSnormopTxnormx1normSTxnormopSnormopT
17 0le0 00
18 17 a1i normopT=0x00
19 4 6 lnopco0i normopT=0normopST=0
20 7 nmlnop0iHIL normopST=0ST=0hop
21 19 20 sylib normopT=0ST=0hop
22 fveq1 ST=0hopSTx=0hopx
23 22 fveq2d ST=0hopnormSTx=norm0hopx
24 ho0val x0hopx=0
25 24 fveq2d xnorm0hopx=norm0
26 norm0 norm0=0
27 25 26 eqtrdi xnorm0hopx=0
28 23 27 sylan9eq ST=0hopxnormSTx=0
29 21 28 sylan normopT=0xnormSTx=0
30 oveq2 normopT=0normopSnormopT=normopS0
31 10 recni normopS
32 31 mul01i normopS0=0
33 30 32 eqtrdi normopT=0normopSnormopT=0
34 33 adantr normopT=0xnormopSnormopT=0
35 18 29 34 3brtr4d normopT=0xnormSTxnormopSnormopT
36 35 adantrr normopT=0xnormx1normSTxnormopSnormopT
37 df-ne normopT0¬normopT=0
38 8 ffvelcdmi xSTx
39 normcl STxnormSTx
40 38 39 syl xnormSTx
41 40 recnd xnormSTx
42 12 recni normopT
43 divrec2 normSTxnormopTnormopT0normSTxnormopT=1normopTnormSTx
44 42 43 mp3an2 normSTxnormopT0normSTxnormopT=1normopTnormSTx
45 41 44 sylan xnormopT0normSTxnormopT=1normopTnormSTx
46 45 ancoms normopT0xnormSTxnormopT=1normopTnormSTx
47 12 rerecclzi normopT01normopT
48 bdopf TBndLinOpT:
49 2 48 ax-mp T:
50 nmopgt0 T:normopT00<normopT
51 49 50 ax-mp normopT00<normopT
52 12 recgt0i 0<normopT0<1normopT
53 51 52 sylbi normopT00<1normopT
54 0re 0
55 ltle 01normopT0<1normopT01normopT
56 54 55 mpan 1normopT0<1normopT01normopT
57 47 53 56 sylc normopT001normopT
58 47 57 absidd normopT01normopT=1normopT
59 58 adantr normopT0x1normopT=1normopT
60 59 oveq1d normopT0x1normopTnormSTx=1normopTnormSTx
61 46 60 eqtr4d normopT0xnormSTxnormopT=1normopTnormSTx
62 42 recclzi normopT01normopT
63 norm-iii 1normopTSTxnorm1normopTSTx=1normopTnormSTx
64 62 38 63 syl2an normopT0xnorm1normopTSTx=1normopTnormSTx
65 61 64 eqtr4d normopT0xnormSTxnormopT=norm1normopTSTx
66 49 ffvelcdmi xTx
67 4 lnopmuli 1normopTTxS1normopTTx=1normopTSTx
68 62 66 67 syl2an normopT0xS1normopTTx=1normopTSTx
69 bdopf SBndLinOpS:
70 1 69 ax-mp S:
71 70 49 hocoi xSTx=STx
72 71 oveq2d x1normopTSTx=1normopTSTx
73 72 adantl normopT0x1normopTSTx=1normopTSTx
74 68 73 eqtr4d normopT0xS1normopTTx=1normopTSTx
75 74 fveq2d normopT0xnormS1normopTTx=norm1normopTSTx
76 65 75 eqtr4d normopT0xnormSTxnormopT=normS1normopTTx
77 76 adantrr normopT0xnormx1normSTxnormopT=normS1normopTTx
78 hvmulcl 1normopTTx1normopTTx
79 62 66 78 syl2an normopT0x1normopTTx
80 79 adantrr normopT0xnormx11normopTTx
81 norm-iii 1normopTTxnorm1normopTTx=1normopTnormTx
82 62 66 81 syl2an normopT0xnorm1normopTTx=1normopTnormTx
83 normcl TxnormTx
84 66 83 syl xnormTx
85 84 recnd xnormTx
86 divrec2 normTxnormopTnormopT0normTxnormopT=1normopTnormTx
87 42 86 mp3an2 normTxnormopT0normTxnormopT=1normopTnormTx
88 85 87 sylan xnormopT0normTxnormopT=1normopTnormTx
89 88 ancoms normopT0xnormTxnormopT=1normopTnormTx
90 59 oveq1d normopT0x1normopTnormTx=1normopTnormTx
91 89 90 eqtr4d normopT0xnormTxnormopT=1normopTnormTx
92 82 91 eqtr4d normopT0xnorm1normopTTx=normTxnormopT
93 92 adantrr normopT0xnormx1norm1normopTTx=normTxnormopT
94 nmoplb T:xnormx1normTxnormopT
95 49 94 mp3an1 xnormx1normTxnormopT
96 42 mullidi 1normopT=normopT
97 95 96 breqtrrdi xnormx1normTx1normopT
98 97 adantl normopT0xnormx1normTx1normopT
99 84 adantr xnormopT0normTx
100 1red xnormopT01
101 12 a1i xnormopT0normopT
102 51 biimpi normopT00<normopT
103 102 adantl xnormopT00<normopT
104 ledivmul2 normTx1normopT0<normopTnormTxnormopT1normTx1normopT
105 99 100 101 103 104 syl112anc xnormopT0normTxnormopT1normTx1normopT
106 105 ancoms normopT0xnormTxnormopT1normTx1normopT
107 106 adantrr normopT0xnormx1normTxnormopT1normTx1normopT
108 98 107 mpbird normopT0xnormx1normTxnormopT1
109 93 108 eqbrtrd normopT0xnormx1norm1normopTTx1
110 nmoplb S:1normopTTxnorm1normopTTx1normS1normopTTxnormopS
111 70 110 mp3an1 1normopTTxnorm1normopTTx1normS1normopTTxnormopS
112 80 109 111 syl2anc normopT0xnormx1normS1normopTTxnormopS
113 77 112 eqbrtrd normopT0xnormx1normSTxnormopTnormopS
114 40 ad2antrl normopT0xnormx1normSTx
115 10 a1i normopT0xnormx1normopS
116 102 adantr normopT0xnormx10<normopT
117 116 12 jctil normopT0xnormx1normopT0<normopT
118 ledivmul2 normSTxnormopSnormopT0<normopTnormSTxnormopTnormopSnormSTxnormopSnormopT
119 114 115 117 118 syl3anc normopT0xnormx1normSTxnormopTnormopSnormSTxnormopSnormopT
120 113 119 mpbid normopT0xnormx1normSTxnormopSnormopT
121 37 120 sylanbr ¬normopT=0xnormx1normSTxnormopSnormopT
122 36 121 pm2.61ian xnormx1normSTxnormopSnormopT
123 122 ex xnormx1normSTxnormopSnormopT
124 16 123 mprgbir normopSTnormopSnormopT