Metamath Proof Explorer


Theorem nrmhmph

Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion nrmhmph JKJNrmKNrm

Proof

Step Hyp Ref Expression
1 hmph JKJHomeoK
2 n0 JHomeoKffJHomeoK
3 hmeocn fJHomeoKfJCnK
4 3 adantl JNrmfJHomeoKfJCnK
5 cntop2 fJCnKKTop
6 4 5 syl JNrmfJHomeoKKTop
7 simpll JNrmfJHomeoKxKyClsdK𝒫xJNrm
8 4 adantr JNrmfJHomeoKxKyClsdK𝒫xfJCnK
9 simprl JNrmfJHomeoKxKyClsdK𝒫xxK
10 cnima fJCnKxKf-1xJ
11 8 9 10 syl2anc JNrmfJHomeoKxKyClsdK𝒫xf-1xJ
12 simprr JNrmfJHomeoKxKyClsdK𝒫xyClsdK𝒫x
13 12 elin1d JNrmfJHomeoKxKyClsdK𝒫xyClsdK
14 cnclima fJCnKyClsdKf-1yClsdJ
15 8 13 14 syl2anc JNrmfJHomeoKxKyClsdK𝒫xf-1yClsdJ
16 12 elin2d JNrmfJHomeoKxKyClsdK𝒫xy𝒫x
17 16 elpwid JNrmfJHomeoKxKyClsdK𝒫xyx
18 imass2 yxf-1yf-1x
19 17 18 syl JNrmfJHomeoKxKyClsdK𝒫xf-1yf-1x
20 nrmsep3 JNrmf-1xJf-1yClsdJf-1yf-1xwJf-1ywclsJwf-1x
21 7 11 15 19 20 syl13anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1x
22 simpllr JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xfJHomeoK
23 simprl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xwJ
24 hmeoima fJHomeoKwJfwK
25 22 23 24 syl2anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xfwK
26 simprrl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xf-1yw
27 eqid J=J
28 eqid K=K
29 27 28 hmeof1o fJHomeoKf:J1-1 ontoK
30 22 29 syl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xf:J1-1 ontoK
31 f1ofun f:J1-1 ontoKFunf
32 30 31 syl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xFunf
33 13 adantr JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xyClsdK
34 28 cldss yClsdKyK
35 33 34 syl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xyK
36 f1ofo f:J1-1 ontoKf:JontoK
37 forn f:JontoKranf=K
38 30 36 37 3syl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xranf=K
39 35 38 sseqtrrd JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xyranf
40 funimass1 Funfyranff-1ywyfw
41 32 39 40 syl2anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xf-1ywyfw
42 26 41 mpd JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xyfw
43 elssuni wJwJ
44 43 ad2antrl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xwJ
45 27 hmeocls fJHomeoKwJclsKfw=fclsJw
46 22 44 45 syl2anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xclsKfw=fclsJw
47 simprrr JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xclsJwf-1x
48 nrmtop JNrmJTop
49 48 ad3antrrr JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xJTop
50 27 clsss3 JTopwJclsJwJ
51 49 44 50 syl2anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xclsJwJ
52 f1odm f:J1-1 ontoKdomf=J
53 30 52 syl JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xdomf=J
54 51 53 sseqtrrd JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xclsJwdomf
55 funimass3 FunfclsJwdomffclsJwxclsJwf-1x
56 32 54 55 syl2anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xfclsJwxclsJwf-1x
57 47 56 mpbird JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xfclsJwx
58 46 57 eqsstrd JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xclsKfwx
59 sseq2 z=fwyzyfw
60 fveq2 z=fwclsKz=clsKfw
61 60 sseq1d z=fwclsKzxclsKfwx
62 59 61 anbi12d z=fwyzclsKzxyfwclsKfwx
63 62 rspcev fwKyfwclsKfwxzKyzclsKzx
64 25 42 58 63 syl12anc JNrmfJHomeoKxKyClsdK𝒫xwJf-1ywclsJwf-1xzKyzclsKzx
65 21 64 rexlimddv JNrmfJHomeoKxKyClsdK𝒫xzKyzclsKzx
66 65 ralrimivva JNrmfJHomeoKxKyClsdK𝒫xzKyzclsKzx
67 isnrm KNrmKTopxKyClsdK𝒫xzKyzclsKzx
68 6 66 67 sylanbrc JNrmfJHomeoKKNrm
69 68 expcom fJHomeoKJNrmKNrm
70 69 exlimiv ffJHomeoKJNrmKNrm
71 2 70 sylbi JHomeoKJNrmKNrm
72 1 71 sylbi JKJNrmKNrm