Metamath Proof Explorer


Theorem omndmul2

Description: In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Hypotheses omndmul.0 B=BaseM
omndmul.1 ˙=M
omndmul2.2 ·˙=M
omndmul2.3 0˙=0M
Assertion omndmul2 MoMndXBN00˙˙X0˙˙N·˙X

Proof

Step Hyp Ref Expression
1 omndmul.0 B=BaseM
2 omndmul.1 ˙=M
3 omndmul2.2 ·˙=M
4 omndmul2.3 0˙=0M
5 df-3an MoMndXBN00˙˙XMoMndXBN00˙˙X
6 anass MoMndXBN0MoMndXBN0
7 6 anbi1i MoMndXBN00˙˙XMoMndXBN00˙˙X
8 5 7 bitr4i MoMndXBN00˙˙XMoMndXBN00˙˙X
9 simplr MoMndXBN00˙˙XN0
10 oveq1 m=0m·˙X=0·˙X
11 10 breq2d m=00˙˙m·˙X0˙˙0·˙X
12 oveq1 m=nm·˙X=n·˙X
13 12 breq2d m=n0˙˙m·˙X0˙˙n·˙X
14 oveq1 m=n+1m·˙X=n+1·˙X
15 14 breq2d m=n+10˙˙m·˙X0˙˙n+1·˙X
16 oveq1 m=Nm·˙X=N·˙X
17 16 breq2d m=N0˙˙m·˙X0˙˙N·˙X
18 omndtos MoMndMToset
19 tospos MTosetMPoset
20 18 19 syl MoMndMPoset
21 omndmnd MoMndMMnd
22 1 4 mndidcl MMnd0˙B
23 21 22 syl MoMnd0˙B
24 1 2 posref MPoset0˙B0˙˙0˙
25 20 23 24 syl2anc MoMnd0˙˙0˙
26 25 ad3antrrr MoMndXBN00˙˙X0˙˙0˙
27 1 4 3 mulg0 XB0·˙X=0˙
28 27 ad3antlr MoMndXBN00˙˙X0·˙X=0˙
29 26 28 breqtrrd MoMndXBN00˙˙X0˙˙0·˙X
30 20 ad5antr MoMndXBN00˙˙Xn00˙˙n·˙XMPoset
31 21 ad5antr MoMndXBN00˙˙Xn00˙˙n·˙XMMnd
32 31 22 syl MoMndXBN00˙˙Xn00˙˙n·˙X0˙B
33 simplr MoMndXBN00˙˙Xn00˙˙n·˙Xn0
34 simp-5r MoMndXBN00˙˙Xn00˙˙n·˙XXB
35 1 3 31 33 34 mulgnn0cld MoMndXBN00˙˙Xn00˙˙n·˙Xn·˙XB
36 simpr32 MoMndXBN00˙˙Xn00˙˙n·˙Xn0
37 1nn0 10
38 37 a1i MoMndXBN00˙˙Xn00˙˙n·˙X10
39 36 38 nn0addcld MoMndXBN00˙˙Xn00˙˙n·˙Xn+10
40 39 3anassrs MoMndXBN00˙˙Xn00˙˙n·˙Xn+10
41 40 3anassrs MoMndXBN00˙˙Xn00˙˙n·˙Xn+10
42 1 3 31 41 34 mulgnn0cld MoMndXBN00˙˙Xn00˙˙n·˙Xn+1·˙XB
43 32 35 42 3jca MoMndXBN00˙˙Xn00˙˙n·˙X0˙Bn·˙XBn+1·˙XB
44 simpr MoMndXBN00˙˙Xn00˙˙n·˙X0˙˙n·˙X
45 simp-4l MoMndXBN00˙˙Xn0MoMnd
46 21 ad4antr MoMndXBN00˙˙Xn0MMnd
47 46 22 syl MoMndXBN00˙˙Xn00˙B
48 simp-4r MoMndXBN00˙˙Xn0XB
49 simpr MoMndXBN00˙˙Xn0n0
50 1 3 46 49 48 mulgnn0cld MoMndXBN00˙˙Xn0n·˙XB
51 simplr MoMndXBN00˙˙Xn00˙˙X
52 eqid +M=+M
53 1 2 52 omndadd MoMnd0˙BXBn·˙XB0˙˙X0˙+Mn·˙X˙X+Mn·˙X
54 45 47 48 50 51 53 syl131anc MoMndXBN00˙˙Xn00˙+Mn·˙X˙X+Mn·˙X
55 1 52 4 mndlid MMndn·˙XB0˙+Mn·˙X=n·˙X
56 46 50 55 syl2anc MoMndXBN00˙˙Xn00˙+Mn·˙X=n·˙X
57 37 a1i MoMndXBN00˙˙Xn010
58 1 3 52 mulgnn0dir MMnd10n0XB1+n·˙X=1·˙X+Mn·˙X
59 46 57 49 48 58 syl13anc MoMndXBN00˙˙Xn01+n·˙X=1·˙X+Mn·˙X
60 1cnd MoMndXBN00˙˙Xn01
61 simpr3 MoMndXBN00˙˙Xn0n0
62 61 nn0cnd MoMndXBN00˙˙Xn0n
63 60 62 addcomd MoMndXBN00˙˙Xn01+n=n+1
64 63 3anassrs MoMndXBN00˙˙Xn01+n=n+1
65 64 oveq1d MoMndXBN00˙˙Xn01+n·˙X=n+1·˙X
66 1 3 mulg1 XB1·˙X=X
67 48 66 syl MoMndXBN00˙˙Xn01·˙X=X
68 67 oveq1d MoMndXBN00˙˙Xn01·˙X+Mn·˙X=X+Mn·˙X
69 59 65 68 3eqtr3rd MoMndXBN00˙˙Xn0X+Mn·˙X=n+1·˙X
70 54 56 69 3brtr3d MoMndXBN00˙˙Xn0n·˙X˙n+1·˙X
71 70 adantr MoMndXBN00˙˙Xn00˙˙n·˙Xn·˙X˙n+1·˙X
72 1 2 postr MPoset0˙Bn·˙XBn+1·˙XB0˙˙n·˙Xn·˙X˙n+1·˙X0˙˙n+1·˙X
73 72 imp MPoset0˙Bn·˙XBn+1·˙XB0˙˙n·˙Xn·˙X˙n+1·˙X0˙˙n+1·˙X
74 30 43 44 71 73 syl22anc MoMndXBN00˙˙Xn00˙˙n·˙X0˙˙n+1·˙X
75 11 13 15 17 29 74 nn0indd MoMndXBN00˙˙XN00˙˙N·˙X
76 9 75 mpdan MoMndXBN00˙˙X0˙˙N·˙X
77 8 76 sylbi MoMndXBN00˙˙X0˙˙N·˙X