Metamath Proof Explorer


Theorem outpasch

Description: Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in Schwabhauser p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses outpasch.p P=BaseG
outpasch.i I=ItvG
outpasch.l L=Line𝒢G
outpasch.g φG𝒢Tarski
outpasch.a φAP
outpasch.b φBP
outpasch.c φCP
outpasch.r φRP
outpasch.q φQP
outpasch.1 φCAIR
outpasch.2 φQBIC
Assertion outpasch φxPxAIBQRIx

Proof

Step Hyp Ref Expression
1 outpasch.p P=BaseG
2 outpasch.i I=ItvG
3 outpasch.l L=Line𝒢G
4 outpasch.g φG𝒢Tarski
5 outpasch.a φAP
6 outpasch.b φBP
7 outpasch.c φCP
8 outpasch.r φRP
9 outpasch.q φQP
10 outpasch.1 φCAIR
11 outpasch.2 φQBIC
12 5 adantr φQRICAP
13 simpr φQRICx=Ax=A
14 13 eleq1d φQRICx=AxAIBAAIB
15 13 oveq2d φQRICx=ARIx=RIA
16 15 eleq2d φQRICx=AQRIxQRIA
17 14 16 anbi12d φQRICx=AxAIBQRIxAAIBQRIA
18 eqid distG=distG
19 1 18 2 4 5 6 tgbtwntriv1 φAAIB
20 19 adantr φQRICAAIB
21 4 adantr φQRICG𝒢Tarski
22 8 adantr φQRICRP
23 9 adantr φQRICQP
24 7 adantr φQRICCP
25 simpr φQRICQRIC
26 1 18 2 4 5 7 8 10 tgbtwncom φCRIA
27 26 adantr φQRICCRIA
28 1 18 2 21 22 23 24 12 25 27 tgbtwnexch φQRICQRIA
29 20 28 jca φQRICAAIBQRIA
30 12 17 29 rspcedvd φQRICxPxAIBQRIx
31 30 adantlr φRQLCQ=CQRICxPxAIBQRIx
32 6 ad2antrr φRQLCQ=C¬QRICBP
33 eleq1 x=BxAIBBAIB
34 oveq2 x=BRIx=RIB
35 34 eleq2d x=BQRIxQRIB
36 33 35 anbi12d x=BxAIBQRIxBAIBQRIB
37 36 adantl φRQLCQ=C¬QRICx=BxAIBQRIxBAIBQRIB
38 1 18 2 4 5 6 tgbtwntriv2 φBAIB
39 38 ad2antrr φRQLCQ=C¬QRICBAIB
40 4 ad3antrrr φRQLCQ=C¬QRICRQICG𝒢Tarski
41 7 ad3antrrr φRQLCQ=C¬QRICRQICCP
42 8 ad3antrrr φRQLCQ=C¬QRICRQICRP
43 9 ad3antrrr φRQLCQ=C¬QRICRQICQP
44 6 ad3antrrr φRQLCQ=C¬QRICRQICBP
45 simpr φRQLCQ=C¬QRICRQICRQIC
46 1 18 2 40 43 42 41 45 tgbtwncom φRQLCQ=C¬QRICRQICRCIQ
47 1 18 2 4 6 9 7 11 tgbtwncom φQCIB
48 47 ad3antrrr φRQLCQ=C¬QRICRQICQCIB
49 1 18 2 40 41 42 43 44 46 48 tgbtwnexch3 φRQLCQ=C¬QRICRQICQRIB
50 4 ad3antrrr φRQLCQ=C¬QRICCQIRG𝒢Tarski
51 6 ad3antrrr φRQLCQ=C¬QRICCQIRBP
52 9 ad3antrrr φRQLCQ=C¬QRICCQIRQP
53 8 ad3antrrr φRQLCQ=C¬QRICCQIRRP
54 7 ad3antrrr φRQLCQ=C¬QRICCQIRCP
55 simpr φRQLCQ=C¬QRICCQIRQ=CQ=C
56 1 18 2 4 8 7 tgbtwntriv2 φCRIC
57 56 ad4antr φRQLCQ=C¬QRICCQIRQ=CCRIC
58 55 57 eqeltrd φRQLCQ=C¬QRICCQIRQ=CQRIC
59 simpllr φRQLCQ=C¬QRICCQIRQ=C¬QRIC
60 58 59 pm2.65da φRQLCQ=C¬QRICCQIR¬Q=C
61 60 neqned φRQLCQ=C¬QRICCQIRQC
62 11 ad3antrrr φRQLCQ=C¬QRICCQIRQBIC
63 simpr φRQLCQ=C¬QRICCQIRCQIR
64 1 18 2 50 51 52 54 53 61 62 63 tgbtwnouttr φRQLCQ=C¬QRICCQIRQBIR
65 1 18 2 50 51 52 53 64 tgbtwncom φRQLCQ=C¬QRICCQIRQRIB
66 1 3 2 4 9 7 8 tgcolg φRQLCQ=CRQICQRICCQIR
67 66 biimpa φRQLCQ=CRQICQRICCQIR
68 3orcoma QRICRQICCQIRRQICQRICCQIR
69 3orass QRICRQICCQIRQRICRQICCQIR
70 68 69 bitr3i RQICQRICCQIRQRICRQICCQIR
71 67 70 sylib φRQLCQ=CQRICRQICCQIR
72 71 orcanai φRQLCQ=C¬QRICRQICCQIR
73 49 65 72 mpjaodan φRQLCQ=C¬QRICQRIB
74 39 73 jca φRQLCQ=C¬QRICBAIBQRIB
75 32 37 74 rspcedvd φRQLCQ=C¬QRICxPxAIBQRIx
76 31 75 pm2.61dan φRQLCQ=CxPxAIBQRIx
77 6 ad2antrr φ¬RQLCQ=CBRLQBP
78 36 adantl φ¬RQLCQ=CBRLQx=BxAIBQRIxBAIBQRIB
79 38 ad2antrr φ¬RQLCQ=CBRLQBAIB
80 4 ad2antrr φ¬RQLCQ=CBRLQG𝒢Tarski
81 8 ad2antrr φ¬RQLCQ=CBRLQRP
82 9 ad2antrr φ¬RQLCQ=CBRLQQP
83 7 ad2antrr φ¬RQLCQ=CBRLQCP
84 simplr φ¬RQLCQ=CBRLQ¬RQLCQ=C
85 simpr φ¬RQLCQ=CBRLQBRLQ
86 4 adantr φ¬RQLCQ=CG𝒢Tarski
87 8 adantr φ¬RQLCQ=CRP
88 9 adantr φ¬RQLCQ=CQP
89 7 adantr φ¬RQLCQ=CCP
90 simpr φ¬RQLCQ=C¬RQLCQ=C
91 1 2 3 86 87 88 89 90 ncolne1 φ¬RQLCQ=CRQ
92 1 2 3 86 87 88 91 tglinerflx2 φ¬RQLCQ=CQRLQ
93 92 adantr φ¬RQLCQ=CBRLQQRLQ
94 1 3 2 86 88 89 87 90 ncolcom φ¬RQLCQ=C¬RCLQC=Q
95 1 3 2 86 89 88 87 94 ncolrot1 φ¬RQLCQ=C¬CQLRQ=R
96 1 2 3 86 89 88 87 95 ncolne1 φ¬RQLCQ=CCQ
97 96 adantr φ¬RQLCQ=CBRLQCQ
98 47 ad2antrr φ¬RQLCQ=CBRLQQCIB
99 1 2 3 80 83 82 77 97 98 btwnlng3 φ¬RQLCQ=CBRLQBCLQ
100 1 2 3 80 83 82 97 tglinerflx2 φ¬RQLCQ=CBRLQQCLQ
101 1 2 3 80 81 82 83 82 84 85 93 99 100 tglineinteq φ¬RQLCQ=CBRLQB=Q
102 1 18 2 4 8 6 tgbtwntriv2 φBRIB
103 102 ad2antrr φ¬RQLCQ=CBRLQBRIB
104 101 103 eqeltrrd φ¬RQLCQ=CBRLQQRIB
105 79 104 jca φ¬RQLCQ=CBRLQBAIBQRIB
106 77 78 105 rspcedvd φ¬RQLCQ=CBRLQxPxAIBQRIx
107 eleq1 t=xtaIbxaIb
108 107 cbvrexvw tRLQtaIbxRLQxaIb
109 108 anbi2i aPRLQbPRLQtRLQtaIbaPRLQbPRLQxRLQxaIb
110 109 opabbii ab|aPRLQbPRLQtRLQtaIb=ab|aPRLQbPRLQxRLQxaIb
111 4 ad2antrr φ¬RQLCQ=C¬BRLQG𝒢Tarski
112 8 ad2antrr φ¬RQLCQ=C¬BRLQRP
113 9 ad2antrr φ¬RQLCQ=C¬BRLQQP
114 91 adantr φ¬RQLCQ=C¬BRLQRQ
115 1 2 3 111 112 113 114 tgelrnln φ¬RQLCQ=C¬BRLQRLQranL
116 eqid hl𝒢G=hl𝒢G
117 7 ad2antrr φ¬RQLCQ=C¬BRLQCP
118 5 ad2antrr φ¬RQLCQ=C¬BRLQAP
119 6 ad2antrr φ¬RQLCQ=C¬BRLQBP
120 92 adantr φ¬RQLCQ=C¬BRLQQRLQ
121 1 3 2 86 88 89 87 90 ncolrot2 φ¬RQLCQ=C¬CRLQR=Q
122 pm2.45 ¬CRLQR=Q¬CRLQ
123 121 122 syl φ¬RQLCQ=C¬CRLQ
124 123 adantr φ¬RQLCQ=C¬BRLQ¬CRLQ
125 simpr φ¬RQLCQ=C¬BRLQ¬BRLQ
126 47 ad2antrr φ¬RQLCQ=C¬BRLQQCIB
127 1 18 2 110 117 119 120 124 125 126 islnoppd φ¬RQLCQ=C¬BRLQCab|aPRLQbPRLQtRLQtaIbB
128 1 2 3 86 87 88 91 tglinerflx1 φ¬RQLCQ=CRRLQ
129 128 adantr φ¬RQLCQ=C¬BRLQRRLQ
130 26 ad2antrr φ¬RQLCQ=C¬BRLQCRIA
131 1 2 3 86 89 87 88 121 ncolne1 φ¬RQLCQ=CCR
132 131 adantr φ¬RQLCQ=C¬BRLQCR
133 1 18 2 111 112 117 118 130 132 tgbtwnne φ¬RQLCQ=C¬BRLQRA
134 1 2 116 112 118 117 111 118 130 133 132 btwnhl1 φ¬RQLCQ=C¬BRLQChl𝒢GRA
135 1 18 2 110 3 115 111 116 117 118 119 127 129 134 opphl φ¬RQLCQ=C¬BRLQAab|aPRLQbPRLQtRLQtaIbB
136 1 18 2 110 118 119 islnopp φ¬RQLCQ=C¬BRLQAab|aPRLQbPRLQtRLQtaIbB¬ARLQ¬BRLQxRLQxAIB
137 135 136 mpbid φ¬RQLCQ=C¬BRLQ¬ARLQ¬BRLQxRLQxAIB
138 137 simprd φ¬RQLCQ=C¬BRLQxRLQxAIB
139 111 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBG𝒢Tarski
140 115 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBRLQranL
141 simplr φ¬RQLCQ=C¬BRLQxRLQxAIBxRLQ
142 1 3 2 139 140 141 tglnpt φ¬RQLCQ=C¬BRLQxRLQxAIBxP
143 simpr φ¬RQLCQ=C¬BRLQxRLQxAIBxAIB
144 139 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBG𝒢Tarski
145 87 ad3antrrr φ¬RQLCQ=C¬BRLQxRLQxAIBRP
146 145 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBRP
147 88 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBQP
148 117 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBCP
149 148 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBCP
150 90 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIB¬RQLCQ=C
151 simplr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtP
152 114 ad4antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBRQ
153 142 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBxP
154 91 necomd φ¬RQLCQ=CQR
155 154 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBQR
156 141 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBxRLQ
157 1 2 3 144 147 146 153 155 156 lncom φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBxQLR
158 simprl φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtxIR
159 1 2 3 144 153 147 146 151 157 158 coltr3 φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtQLR
160 1 2 3 144 146 147 151 152 159 lncom φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtRLQ
161 92 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBQRLQ
162 96 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBCQ
163 119 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBBP
164 163 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBBP
165 6 adantr φ¬RQLCQ=CBP
166 96 necomd φ¬RQLCQ=CQC
167 11 adantr φ¬RQLCQ=CQBIC
168 1 2 3 86 88 89 165 166 167 btwnlng2 φ¬RQLCQ=CBQLC
169 168 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBBQLC
170 simprr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtCIB
171 1 18 2 144 149 151 164 170 tgbtwncom φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtBIC
172 1 2 3 144 164 147 149 151 169 171 coltr3 φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtQLC
173 1 2 3 144 149 147 151 162 172 lncom φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtCLQ
174 1 2 3 86 89 88 96 tglinerflx2 φ¬RQLCQ=CQCLQ
175 174 ad5antr φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBQCLQ
176 1 2 3 144 146 147 149 147 150 160 161 173 175 tglineinteq φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBt=Q
177 1 18 2 144 153 151 146 158 tgbtwncom φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBtRIx
178 176 177 eqeltrrd φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIBQRIx
179 118 ad2antrr φ¬RQLCQ=C¬BRLQxRLQxAIBAP
180 1 18 2 139 179 142 163 143 tgbtwncom φ¬RQLCQ=C¬BRLQxRLQxAIBxBIA
181 26 ad4antr φ¬RQLCQ=C¬BRLQxRLQxAIBCRIA
182 1 18 2 139 163 145 179 142 148 180 181 axtgpasch φ¬RQLCQ=C¬BRLQxRLQxAIBtPtxIRtCIB
183 178 182 r19.29a φ¬RQLCQ=C¬BRLQxRLQxAIBQRIx
184 142 143 183 jca32 φ¬RQLCQ=C¬BRLQxRLQxAIBxPxAIBQRIx
185 184 expl φ¬RQLCQ=C¬BRLQxRLQxAIBxPxAIBQRIx
186 185 reximdv2 φ¬RQLCQ=C¬BRLQxRLQxAIBxPxAIBQRIx
187 138 186 mpd φ¬RQLCQ=C¬BRLQxPxAIBQRIx
188 106 187 pm2.61dan φ¬RQLCQ=CxPxAIBQRIx
189 76 188 pm2.61dan φxPxAIBQRIx