Metamath Proof Explorer


Theorem ovnsubadd2lem

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnsubadd2lem.x φXFin
ovnsubadd2lem.a φAX
ovnsubadd2lem.b φBX
ovnsubadd2lem.c C=nifn=1Aifn=2B
Assertion ovnsubadd2lem φvoln*XABvoln*XA+𝑒voln*XB

Proof

Step Hyp Ref Expression
1 ovnsubadd2lem.x φXFin
2 ovnsubadd2lem.a φAX
3 ovnsubadd2lem.b φBX
4 ovnsubadd2lem.c C=nifn=1Aifn=2B
5 iftrue n=1ifn=1Aifn=2B=A
6 5 adantl φn=1ifn=1Aifn=2B=A
7 ovexd φXV
8 7 2 ssexd φAV
9 8 2 elpwd φA𝒫X
10 9 adantr φn=1A𝒫X
11 6 10 eqeltrd φn=1ifn=1Aifn=2B𝒫X
12 11 adantlr φnn=1ifn=1Aifn=2B𝒫X
13 simpl ¬n=1n=2¬n=1
14 13 iffalsed ¬n=1n=2ifn=1Aifn=2B=ifn=2B
15 simpr ¬n=1n=2n=2
16 15 iftrued ¬n=1n=2ifn=2B=B
17 14 16 eqtrd ¬n=1n=2ifn=1Aifn=2B=B
18 17 adantll φ¬n=1n=2ifn=1Aifn=2B=B
19 7 3 ssexd φBV
20 19 3 elpwd φB𝒫X
21 20 ad2antrr φ¬n=1n=2B𝒫X
22 18 21 eqeltrd φ¬n=1n=2ifn=1Aifn=2B𝒫X
23 22 adantllr φn¬n=1n=2ifn=1Aifn=2B𝒫X
24 simpl ¬n=1¬n=2¬n=1
25 24 iffalsed ¬n=1¬n=2ifn=1Aifn=2B=ifn=2B
26 simpr ¬n=1¬n=2¬n=2
27 26 iffalsed ¬n=1¬n=2ifn=2B=
28 25 27 eqtrd ¬n=1¬n=2ifn=1Aifn=2B=
29 0elpw 𝒫X
30 29 a1i ¬n=1¬n=2𝒫X
31 28 30 eqeltrd ¬n=1¬n=2ifn=1Aifn=2B𝒫X
32 31 adantll φn¬n=1¬n=2ifn=1Aifn=2B𝒫X
33 23 32 pm2.61dan φn¬n=1ifn=1Aifn=2B𝒫X
34 12 33 pm2.61dan φnifn=1Aifn=2B𝒫X
35 34 4 fmptd φC:𝒫X
36 1 35 ovnsubadd φvoln*XnCnsum^nvoln*XCn
37 eldifi n12n
38 37 adantl φn12n
39 eldifn n12¬n12
40 vex nV
41 40 a1i ¬n12nV
42 id ¬n12¬n12
43 41 42 nelpr1 ¬n12n1
44 43 neneqd ¬n12¬n=1
45 39 44 syl n12¬n=1
46 41 42 nelpr2 ¬n12n2
47 46 neneqd ¬n12¬n=2
48 39 47 syl n12¬n=2
49 45 48 28 syl2anc n12ifn=1Aifn=2B=
50 0ex V
51 50 a1i n12V
52 49 51 eqeltrd n12ifn=1Aifn=2BV
53 52 adantl φn12ifn=1Aifn=2BV
54 4 fvmpt2 nifn=1Aifn=2BVCn=ifn=1Aifn=2B
55 38 53 54 syl2anc φn12Cn=ifn=1Aifn=2B
56 49 adantl φn12ifn=1Aifn=2B=
57 55 56 eqtrd φn12Cn=
58 57 ralrimiva φn12Cn=
59 nfcv _n12
60 59 iunxdif3 n12Cn=n12Cn=nCn
61 58 60 syl φn12Cn=nCn
62 61 eqcomd φnCn=n12Cn
63 1nn 1
64 2nn 2
65 63 64 pm3.2i 12
66 prssi 1212
67 65 66 ax-mp 12
68 dfss4 1212=12
69 67 68 mpbi 12=12
70 iuneq1 12=12n12Cn=n12Cn
71 69 70 ax-mp n12Cn=n12Cn
72 71 a1i φn12Cn=n12Cn
73 fveq2 n=1Cn=C1
74 fveq2 n=2Cn=C2
75 73 74 iunxprg 12n12Cn=C1C2
76 63 64 75 mp2an n12Cn=C1C2
77 76 a1i φn12Cn=C1C2
78 63 a1i φ1
79 4 5 78 8 fvmptd3 φC1=A
80 id n=2n=2
81 1ne2 12
82 81 necomi 21
83 82 a1i n=221
84 80 83 eqnetrd n=2n1
85 84 neneqd n=2¬n=1
86 85 iffalsed n=2ifn=1Aifn=2B=ifn=2B
87 iftrue n=2ifn=2B=B
88 86 87 eqtrd n=2ifn=1Aifn=2B=B
89 64 a1i φ2
90 4 88 89 19 fvmptd3 φC2=B
91 79 90 uneq12d φC1C2=AB
92 eqidd φAB=AB
93 77 91 92 3eqtrd φn12Cn=AB
94 62 72 93 3eqtrd φnCn=AB
95 94 fveq2d φvoln*XnCn=voln*XAB
96 nfv nφ
97 nnex V
98 97 a1i φV
99 67 a1i φ12
100 1 adantr φn12XFin
101 simpl φn12φ
102 99 sselda φn12n
103 35 ffvelcdmda φnCn𝒫X
104 elpwi Cn𝒫XCnX
105 103 104 syl φnCnX
106 101 102 105 syl2anc φn12CnX
107 100 106 ovncl φn12voln*XCn0+∞
108 57 fveq2d φn12voln*XCn=voln*X
109 1 adantr φn12XFin
110 109 ovn0 φn12voln*X=0
111 108 110 eqtrd φn12voln*XCn=0
112 96 98 99 107 111 sge0ss φsum^n12voln*XCn=sum^nvoln*XCn
113 112 eqcomd φsum^nvoln*XCn=sum^n12voln*XCn
114 79 2 eqsstrd φC1X
115 1 114 ovncl φvoln*XC10+∞
116 90 3 eqsstrd φC2X
117 1 116 ovncl φvoln*XC20+∞
118 2fveq3 n=1voln*XCn=voln*XC1
119 2fveq3 n=2voln*XCn=voln*XC2
120 81 a1i φ12
121 78 89 115 117 118 119 120 sge0pr φsum^n12voln*XCn=voln*XC1+𝑒voln*XC2
122 79 fveq2d φvoln*XC1=voln*XA
123 90 fveq2d φvoln*XC2=voln*XB
124 122 123 oveq12d φvoln*XC1+𝑒voln*XC2=voln*XA+𝑒voln*XB
125 113 121 124 3eqtrd φsum^nvoln*XCn=voln*XA+𝑒voln*XB
126 95 125 breq12d φvoln*XnCnsum^nvoln*XCnvoln*XABvoln*XA+𝑒voln*XB
127 36 126 mpbid φvoln*XABvoln*XA+𝑒voln*XB