Step |
Hyp |
Ref |
Expression |
1 |
|
ovnsubadd2lem.x |
|
2 |
|
ovnsubadd2lem.a |
|
3 |
|
ovnsubadd2lem.b |
|
4 |
|
ovnsubadd2lem.c |
|
5 |
|
iftrue |
|
6 |
5
|
adantl |
|
7 |
|
ovexd |
|
8 |
7 2
|
ssexd |
|
9 |
8 2
|
elpwd |
|
10 |
9
|
adantr |
|
11 |
6 10
|
eqeltrd |
|
12 |
11
|
adantlr |
|
13 |
|
simpl |
|
14 |
13
|
iffalsed |
|
15 |
|
simpr |
|
16 |
15
|
iftrued |
|
17 |
14 16
|
eqtrd |
|
18 |
17
|
adantll |
|
19 |
7 3
|
ssexd |
|
20 |
19 3
|
elpwd |
|
21 |
20
|
ad2antrr |
|
22 |
18 21
|
eqeltrd |
|
23 |
22
|
adantllr |
|
24 |
|
simpl |
|
25 |
24
|
iffalsed |
|
26 |
|
simpr |
|
27 |
26
|
iffalsed |
|
28 |
25 27
|
eqtrd |
|
29 |
|
0elpw |
|
30 |
29
|
a1i |
|
31 |
28 30
|
eqeltrd |
|
32 |
31
|
adantll |
|
33 |
23 32
|
pm2.61dan |
|
34 |
12 33
|
pm2.61dan |
|
35 |
34 4
|
fmptd |
|
36 |
1 35
|
ovnsubadd |
|
37 |
|
eldifi |
|
38 |
37
|
adantl |
|
39 |
|
eldifn |
|
40 |
|
vex |
|
41 |
40
|
a1i |
|
42 |
|
id |
|
43 |
41 42
|
nelpr1 |
|
44 |
43
|
neneqd |
|
45 |
39 44
|
syl |
|
46 |
41 42
|
nelpr2 |
|
47 |
46
|
neneqd |
|
48 |
39 47
|
syl |
|
49 |
45 48 28
|
syl2anc |
|
50 |
|
0ex |
|
51 |
50
|
a1i |
|
52 |
49 51
|
eqeltrd |
|
53 |
52
|
adantl |
|
54 |
4
|
fvmpt2 |
|
55 |
38 53 54
|
syl2anc |
|
56 |
49
|
adantl |
|
57 |
55 56
|
eqtrd |
|
58 |
57
|
ralrimiva |
|
59 |
|
nfcv |
|
60 |
59
|
iunxdif3 |
|
61 |
58 60
|
syl |
|
62 |
61
|
eqcomd |
|
63 |
|
1nn |
|
64 |
|
2nn |
|
65 |
63 64
|
pm3.2i |
|
66 |
|
prssi |
|
67 |
65 66
|
ax-mp |
|
68 |
|
dfss4 |
|
69 |
67 68
|
mpbi |
|
70 |
|
iuneq1 |
|
71 |
69 70
|
ax-mp |
|
72 |
71
|
a1i |
|
73 |
|
fveq2 |
|
74 |
|
fveq2 |
|
75 |
73 74
|
iunxprg |
|
76 |
63 64 75
|
mp2an |
|
77 |
76
|
a1i |
|
78 |
63
|
a1i |
|
79 |
4 5 78 8
|
fvmptd3 |
|
80 |
|
id |
|
81 |
|
1ne2 |
|
82 |
81
|
necomi |
|
83 |
82
|
a1i |
|
84 |
80 83
|
eqnetrd |
|
85 |
84
|
neneqd |
|
86 |
85
|
iffalsed |
|
87 |
|
iftrue |
|
88 |
86 87
|
eqtrd |
|
89 |
64
|
a1i |
|
90 |
4 88 89 19
|
fvmptd3 |
|
91 |
79 90
|
uneq12d |
|
92 |
|
eqidd |
|
93 |
77 91 92
|
3eqtrd |
|
94 |
62 72 93
|
3eqtrd |
|
95 |
94
|
fveq2d |
|
96 |
|
nfv |
|
97 |
|
nnex |
|
98 |
97
|
a1i |
|
99 |
67
|
a1i |
|
100 |
1
|
adantr |
|
101 |
|
simpl |
|
102 |
99
|
sselda |
|
103 |
35
|
ffvelrnda |
|
104 |
|
elpwi |
|
105 |
103 104
|
syl |
|
106 |
101 102 105
|
syl2anc |
|
107 |
100 106
|
ovncl |
|
108 |
57
|
fveq2d |
|
109 |
1
|
adantr |
|
110 |
109
|
ovn0 |
|
111 |
108 110
|
eqtrd |
|
112 |
96 98 99 107 111
|
sge0ss |
|
113 |
112
|
eqcomd |
|
114 |
79 2
|
eqsstrd |
|
115 |
1 114
|
ovncl |
|
116 |
90 3
|
eqsstrd |
|
117 |
1 116
|
ovncl |
|
118 |
|
2fveq3 |
|
119 |
|
2fveq3 |
|
120 |
81
|
a1i |
|
121 |
78 89 115 117 118 119 120
|
sge0pr |
|
122 |
79
|
fveq2d |
|
123 |
90
|
fveq2d |
|
124 |
122 123
|
oveq12d |
|
125 |
113 121 124
|
3eqtrd |
|
126 |
95 125
|
breq12d |
|
127 |
36 126
|
mpbid |
|