Metamath Proof Explorer


Theorem ovnsubadd2lem

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnsubadd2lem.x φ X Fin
ovnsubadd2lem.a φ A X
ovnsubadd2lem.b φ B X
ovnsubadd2lem.c C = n if n = 1 A if n = 2 B
Assertion ovnsubadd2lem φ voln* X A B voln* X A + 𝑒 voln* X B

Proof

Step Hyp Ref Expression
1 ovnsubadd2lem.x φ X Fin
2 ovnsubadd2lem.a φ A X
3 ovnsubadd2lem.b φ B X
4 ovnsubadd2lem.c C = n if n = 1 A if n = 2 B
5 iftrue n = 1 if n = 1 A if n = 2 B = A
6 5 adantl φ n = 1 if n = 1 A if n = 2 B = A
7 ovexd φ X V
8 7 2 ssexd φ A V
9 8 2 elpwd φ A 𝒫 X
10 9 adantr φ n = 1 A 𝒫 X
11 6 10 eqeltrd φ n = 1 if n = 1 A if n = 2 B 𝒫 X
12 11 adantlr φ n n = 1 if n = 1 A if n = 2 B 𝒫 X
13 simpl ¬ n = 1 n = 2 ¬ n = 1
14 13 iffalsed ¬ n = 1 n = 2 if n = 1 A if n = 2 B = if n = 2 B
15 simpr ¬ n = 1 n = 2 n = 2
16 15 iftrued ¬ n = 1 n = 2 if n = 2 B = B
17 14 16 eqtrd ¬ n = 1 n = 2 if n = 1 A if n = 2 B = B
18 17 adantll φ ¬ n = 1 n = 2 if n = 1 A if n = 2 B = B
19 7 3 ssexd φ B V
20 19 3 elpwd φ B 𝒫 X
21 20 ad2antrr φ ¬ n = 1 n = 2 B 𝒫 X
22 18 21 eqeltrd φ ¬ n = 1 n = 2 if n = 1 A if n = 2 B 𝒫 X
23 22 adantllr φ n ¬ n = 1 n = 2 if n = 1 A if n = 2 B 𝒫 X
24 simpl ¬ n = 1 ¬ n = 2 ¬ n = 1
25 24 iffalsed ¬ n = 1 ¬ n = 2 if n = 1 A if n = 2 B = if n = 2 B
26 simpr ¬ n = 1 ¬ n = 2 ¬ n = 2
27 26 iffalsed ¬ n = 1 ¬ n = 2 if n = 2 B =
28 25 27 eqtrd ¬ n = 1 ¬ n = 2 if n = 1 A if n = 2 B =
29 0elpw 𝒫 X
30 29 a1i ¬ n = 1 ¬ n = 2 𝒫 X
31 28 30 eqeltrd ¬ n = 1 ¬ n = 2 if n = 1 A if n = 2 B 𝒫 X
32 31 adantll φ n ¬ n = 1 ¬ n = 2 if n = 1 A if n = 2 B 𝒫 X
33 23 32 pm2.61dan φ n ¬ n = 1 if n = 1 A if n = 2 B 𝒫 X
34 12 33 pm2.61dan φ n if n = 1 A if n = 2 B 𝒫 X
35 34 4 fmptd φ C : 𝒫 X
36 1 35 ovnsubadd φ voln* X n C n sum^ n voln* X C n
37 eldifi n 1 2 n
38 37 adantl φ n 1 2 n
39 eldifn n 1 2 ¬ n 1 2
40 vex n V
41 40 a1i ¬ n 1 2 n V
42 id ¬ n 1 2 ¬ n 1 2
43 41 42 nelpr1 ¬ n 1 2 n 1
44 43 neneqd ¬ n 1 2 ¬ n = 1
45 39 44 syl n 1 2 ¬ n = 1
46 41 42 nelpr2 ¬ n 1 2 n 2
47 46 neneqd ¬ n 1 2 ¬ n = 2
48 39 47 syl n 1 2 ¬ n = 2
49 45 48 28 syl2anc n 1 2 if n = 1 A if n = 2 B =
50 0ex V
51 50 a1i n 1 2 V
52 49 51 eqeltrd n 1 2 if n = 1 A if n = 2 B V
53 52 adantl φ n 1 2 if n = 1 A if n = 2 B V
54 4 fvmpt2 n if n = 1 A if n = 2 B V C n = if n = 1 A if n = 2 B
55 38 53 54 syl2anc φ n 1 2 C n = if n = 1 A if n = 2 B
56 49 adantl φ n 1 2 if n = 1 A if n = 2 B =
57 55 56 eqtrd φ n 1 2 C n =
58 57 ralrimiva φ n 1 2 C n =
59 nfcv _ n 1 2
60 59 iunxdif3 n 1 2 C n = n 1 2 C n = n C n
61 58 60 syl φ n 1 2 C n = n C n
62 61 eqcomd φ n C n = n 1 2 C n
63 1nn 1
64 2nn 2
65 63 64 pm3.2i 1 2
66 prssi 1 2 1 2
67 65 66 ax-mp 1 2
68 dfss4 1 2 1 2 = 1 2
69 67 68 mpbi 1 2 = 1 2
70 iuneq1 1 2 = 1 2 n 1 2 C n = n 1 2 C n
71 69 70 ax-mp n 1 2 C n = n 1 2 C n
72 71 a1i φ n 1 2 C n = n 1 2 C n
73 fveq2 n = 1 C n = C 1
74 fveq2 n = 2 C n = C 2
75 73 74 iunxprg 1 2 n 1 2 C n = C 1 C 2
76 63 64 75 mp2an n 1 2 C n = C 1 C 2
77 76 a1i φ n 1 2 C n = C 1 C 2
78 63 a1i φ 1
79 4 5 78 8 fvmptd3 φ C 1 = A
80 id n = 2 n = 2
81 1ne2 1 2
82 81 necomi 2 1
83 82 a1i n = 2 2 1
84 80 83 eqnetrd n = 2 n 1
85 84 neneqd n = 2 ¬ n = 1
86 85 iffalsed n = 2 if n = 1 A if n = 2 B = if n = 2 B
87 iftrue n = 2 if n = 2 B = B
88 86 87 eqtrd n = 2 if n = 1 A if n = 2 B = B
89 64 a1i φ 2
90 4 88 89 19 fvmptd3 φ C 2 = B
91 79 90 uneq12d φ C 1 C 2 = A B
92 eqidd φ A B = A B
93 77 91 92 3eqtrd φ n 1 2 C n = A B
94 62 72 93 3eqtrd φ n C n = A B
95 94 fveq2d φ voln* X n C n = voln* X A B
96 nfv n φ
97 nnex V
98 97 a1i φ V
99 67 a1i φ 1 2
100 1 adantr φ n 1 2 X Fin
101 simpl φ n 1 2 φ
102 99 sselda φ n 1 2 n
103 35 ffvelrnda φ n C n 𝒫 X
104 elpwi C n 𝒫 X C n X
105 103 104 syl φ n C n X
106 101 102 105 syl2anc φ n 1 2 C n X
107 100 106 ovncl φ n 1 2 voln* X C n 0 +∞
108 57 fveq2d φ n 1 2 voln* X C n = voln* X
109 1 adantr φ n 1 2 X Fin
110 109 ovn0 φ n 1 2 voln* X = 0
111 108 110 eqtrd φ n 1 2 voln* X C n = 0
112 96 98 99 107 111 sge0ss φ sum^ n 1 2 voln* X C n = sum^ n voln* X C n
113 112 eqcomd φ sum^ n voln* X C n = sum^ n 1 2 voln* X C n
114 79 2 eqsstrd φ C 1 X
115 1 114 ovncl φ voln* X C 1 0 +∞
116 90 3 eqsstrd φ C 2 X
117 1 116 ovncl φ voln* X C 2 0 +∞
118 2fveq3 n = 1 voln* X C n = voln* X C 1
119 2fveq3 n = 2 voln* X C n = voln* X C 2
120 81 a1i φ 1 2
121 78 89 115 117 118 119 120 sge0pr φ sum^ n 1 2 voln* X C n = voln* X C 1 + 𝑒 voln* X C 2
122 79 fveq2d φ voln* X C 1 = voln* X A
123 90 fveq2d φ voln* X C 2 = voln* X B
124 122 123 oveq12d φ voln* X C 1 + 𝑒 voln* X C 2 = voln* X A + 𝑒 voln* X B
125 113 121 124 3eqtrd φ sum^ n voln* X C n = voln* X A + 𝑒 voln* X B
126 95 125 breq12d φ voln* X n C n sum^ n voln* X C n voln* X A B voln* X A + 𝑒 voln* X B
127 36 126 mpbid φ voln* X A B voln* X A + 𝑒 voln* X B