Metamath Proof Explorer


Theorem ovolioo

Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014)

Ref Expression
Assertion ovolioo ABABvol*AB=BA

Proof

Step Hyp Ref Expression
1 ioombl ABdomvol
2 mblvol ABdomvolvolAB=vol*AB
3 1 2 ax-mp volAB=vol*AB
4 iccmbl ABABdomvol
5 mblvol ABdomvolvolAB=vol*AB
6 4 5 syl ABvolAB=vol*AB
7 6 3adant3 ABABvolAB=vol*AB
8 1 a1i ABABABdomvol
9 prssi ABAB
10 9 3adant3 ABABAB
11 prfi ABFin
12 ovolfi ABFinABvol*AB=0
13 11 10 12 sylancr ABABvol*AB=0
14 nulmbl ABvol*AB=0ABdomvol
15 10 13 14 syl2anc ABABABdomvol
16 df-pr AB=AB
17 16 ineq2i ABAB=ABAB
18 indi ABAB=ABAABB
19 17 18 eqtri ABAB=ABAABB
20 simp1 ABABA
21 20 ltnrd ABAB¬A<A
22 eliooord AABA<AA<B
23 22 simpld AABA<A
24 21 23 nsyl ABAB¬AAB
25 disjsn ABA=¬AAB
26 24 25 sylibr ABABABA=
27 simp2 ABABB
28 27 ltnrd ABAB¬B<B
29 eliooord BABA<BB<B
30 29 simprd BABB<B
31 28 30 nsyl ABAB¬BAB
32 disjsn ABB=¬BAB
33 31 32 sylibr ABABABB=
34 26 33 uneq12d ABABABAABB=
35 un0 =
36 34 35 eqtrdi ABABABAABB=
37 19 36 eqtrid ABABABAB=
38 ioossicc ABAB
39 iccssre ABAB
40 39 3adant3 ABABAB
41 ovolicc ABABvol*AB=BA
42 27 20 resubcld ABABBA
43 41 42 eqeltrd ABABvol*AB
44 ovolsscl ABABABvol*ABvol*AB
45 38 40 43 44 mp3an2i ABABvol*AB
46 3 45 eqeltrid ABABvolAB
47 mblvol ABdomvolvolAB=vol*AB
48 15 47 syl ABABvolAB=vol*AB
49 48 13 eqtrd ABABvolAB=0
50 0re 0
51 49 50 eqeltrdi ABABvolAB
52 volun ABdomvolABdomvolABAB=volABvolABvolABAB=volAB+volAB
53 8 15 37 46 51 52 syl32anc ABABvolABAB=volAB+volAB
54 rexr AA*
55 rexr BB*
56 id ABAB
57 prunioo A*B*ABABAB=AB
58 54 55 56 57 syl3an ABABABAB=AB
59 58 fveq2d ABABvolABAB=volAB
60 49 oveq2d ABABvolAB+volAB=volAB+0
61 46 recnd ABABvolAB
62 61 addridd ABABvolAB+0=volAB
63 60 62 eqtrd ABABvolAB+volAB=volAB
64 53 59 63 3eqtr3d ABABvolAB=volAB
65 7 64 41 3eqtr3d ABABvolAB=BA
66 3 65 eqtr3id ABABvol*AB=BA