Metamath Proof Explorer


Theorem pell14qrdich

Description: A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrdich DAPell14QRDAPell1QRD1APell1QRD

Proof

Step Hyp Ref Expression
1 elpell14qr DAPell14QRDAa0bA=a+Dba2Db2=1
2 1 biimpa DAPell14QRDAa0bA=a+Dba2Db2=1
3 simplrr DAPell14QRDAa0bA=a+Dba2Db2=1b
4 elznn0 bbb0b0
5 3 4 sylib DAPell14QRDAa0bA=a+Dba2Db2=1bb0b0
6 5 simprd DAPell14QRDAa0bA=a+Dba2Db2=1b0b0
7 simplr DAPell14QRDAa0bA
8 7 ad2antrr DAPell14QRDAa0bA=a+Dba2Db2=1b0A
9 simprl DAPell14QRDAa0ba0
10 9 ad2antrr DAPell14QRDAa0bA=a+Dba2Db2=1b0a0
11 simpr DAPell14QRDAa0bA=a+Dba2Db2=1b0b0
12 simplr DAPell14QRDAa0bA=a+Dba2Db2=1b0A=a+Dba2Db2=1
13 rsp2e a0b0A=a+Dba2Db2=1a0b0A=a+Dba2Db2=1
14 10 11 12 13 syl3anc DAPell14QRDAa0bA=a+Dba2Db2=1b0a0b0A=a+Dba2Db2=1
15 8 14 jca DAPell14QRDAa0bA=a+Dba2Db2=1b0Aa0b0A=a+Dba2Db2=1
16 15 ex DAPell14QRDAa0bA=a+Dba2Db2=1b0Aa0b0A=a+Dba2Db2=1
17 elpell1qr DAPell1QRDAa0b0A=a+Dba2Db2=1
18 17 ad4antr DAPell14QRDAa0bA=a+Dba2Db2=1APell1QRDAa0b0A=a+Dba2Db2=1
19 16 18 sylibrd DAPell14QRDAa0bA=a+Dba2Db2=1b0APell1QRD
20 7 ad2antrr DAPell14QRDAa0bA=a+Dba2Db2=1b0A
21 pell14qrne0 DAPell14QRDA0
22 21 ad4antr DAPell14QRDAa0bA=a+Dba2Db2=1b0A0
23 20 22 rereccld DAPell14QRDAa0bA=a+Dba2Db2=1b01A
24 9 ad2antrr DAPell14QRDAa0bA=a+Dba2Db2=1b0a0
25 simpr DAPell14QRDAa0bA=a+Dba2Db2=1b0b0
26 pell14qrre DAPell14QRDA
27 26 recnd DAPell14QRDA
28 27 21 reccld DAPell14QRD1A
29 28 ad3antrrr DAPell14QRDAa0bA=a+Dba2Db2=11A
30 nn0cn a0a
31 30 ad2antrl DAPell14QRDAa0ba
32 eldifi DD
33 32 nncnd DD
34 33 ad3antrrr DAPell14QRDAa0bD
35 34 sqrtcld DAPell14QRDAa0bD
36 zcn bb
37 36 ad2antll DAPell14QRDAa0bb
38 37 negcld DAPell14QRDAa0bb
39 35 38 mulcld DAPell14QRDAa0bDb
40 31 39 addcld DAPell14QRDAa0ba+Db
41 40 adantr DAPell14QRDAa0bA=a+Dba2Db2=1a+Db
42 27 ad3antrrr DAPell14QRDAa0bA=a+Dba2Db2=1A
43 21 ad3antrrr DAPell14QRDAa0bA=a+Dba2Db2=1A0
44 27 21 recidd DAPell14QRDA1A=1
45 44 ad3antrrr DAPell14QRDAa0bA=a+Dba2Db2=1A1A=1
46 simprr DAPell14QRDAa0bA=a+Dba2Db2=1a2Db2=1
47 45 46 eqtr4d DAPell14QRDAa0bA=a+Dba2Db2=1A1A=a2Db2
48 31 adantr DAPell14QRDAa0bA=a+Dba
49 35 37 mulcld DAPell14QRDAa0bDb
50 49 adantr DAPell14QRDAa0bA=a+DbDb
51 subsq aDba2Db2=a+DbaDb
52 48 50 51 syl2anc DAPell14QRDAa0bA=a+Dba2Db2=a+DbaDb
53 35 37 sqmuld DAPell14QRDAa0bDb2=D2b2
54 34 sqsqrtd DAPell14QRDAa0bD2=D
55 54 oveq1d DAPell14QRDAa0bD2b2=Db2
56 53 55 eqtr2d DAPell14QRDAa0bDb2=Db2
57 56 oveq2d DAPell14QRDAa0ba2Db2=a2Db2
58 57 adantr DAPell14QRDAa0bA=a+Dba2Db2=a2Db2
59 simpr DAPell14QRDAa0bA=a+DbA=a+Db
60 35 37 mulneg2d DAPell14QRDAa0bDb=Db
61 60 oveq2d DAPell14QRDAa0ba+Db=a+Db
62 negsub aDba+Db=aDb
63 62 eqcomd aDbaDb=a+Db
64 31 49 63 syl2anc DAPell14QRDAa0baDb=a+Db
65 61 64 eqtr4d DAPell14QRDAa0ba+Db=aDb
66 65 adantr DAPell14QRDAa0bA=a+Dba+Db=aDb
67 59 66 oveq12d DAPell14QRDAa0bA=a+DbAa+Db=a+DbaDb
68 52 58 67 3eqtr4d DAPell14QRDAa0bA=a+Dba2Db2=Aa+Db
69 68 adantrr DAPell14QRDAa0bA=a+Dba2Db2=1a2Db2=Aa+Db
70 47 69 eqtrd DAPell14QRDAa0bA=a+Dba2Db2=1A1A=Aa+Db
71 29 41 42 43 70 mulcanad DAPell14QRDAa0bA=a+Dba2Db2=11A=a+Db
72 71 adantr DAPell14QRDAa0bA=a+Dba2Db2=1b01A=a+Db
73 37 ad2antrr DAPell14QRDAa0bA=a+Dba2Db2=1b0b
74 sqneg bb2=b2
75 73 74 syl DAPell14QRDAa0bA=a+Dba2Db2=1b0b2=b2
76 75 oveq2d DAPell14QRDAa0bA=a+Dba2Db2=1b0Db2=Db2
77 76 oveq2d DAPell14QRDAa0bA=a+Dba2Db2=1b0a2Db2=a2Db2
78 simplrr DAPell14QRDAa0bA=a+Dba2Db2=1b0a2Db2=1
79 77 78 eqtrd DAPell14QRDAa0bA=a+Dba2Db2=1b0a2Db2=1
80 72 79 jca DAPell14QRDAa0bA=a+Dba2Db2=1b01A=a+Dba2Db2=1
81 oveq2 c=bDc=Db
82 81 oveq2d c=ba+Dc=a+Db
83 82 eqeq2d c=b1A=a+Dc1A=a+Db
84 oveq1 c=bc2=b2
85 84 oveq2d c=bDc2=Db2
86 85 oveq2d c=ba2Dc2=a2Db2
87 86 eqeq1d c=ba2Dc2=1a2Db2=1
88 83 87 anbi12d c=b1A=a+Dca2Dc2=11A=a+Dba2Db2=1
89 88 rspcev b01A=a+Dba2Db2=1c01A=a+Dca2Dc2=1
90 25 80 89 syl2anc DAPell14QRDAa0bA=a+Dba2Db2=1b0c01A=a+Dca2Dc2=1
91 rspe a0c01A=a+Dca2Dc2=1a0c01A=a+Dca2Dc2=1
92 24 90 91 syl2anc DAPell14QRDAa0bA=a+Dba2Db2=1b0a0c01A=a+Dca2Dc2=1
93 23 92 jca DAPell14QRDAa0bA=a+Dba2Db2=1b01Aa0c01A=a+Dca2Dc2=1
94 93 ex DAPell14QRDAa0bA=a+Dba2Db2=1b01Aa0c01A=a+Dca2Dc2=1
95 elpell1qr D1APell1QRD1Aa0c01A=a+Dca2Dc2=1
96 95 ad4antr DAPell14QRDAa0bA=a+Dba2Db2=11APell1QRD1Aa0c01A=a+Dca2Dc2=1
97 94 96 sylibrd DAPell14QRDAa0bA=a+Dba2Db2=1b01APell1QRD
98 19 97 orim12d DAPell14QRDAa0bA=a+Dba2Db2=1b0b0APell1QRD1APell1QRD
99 6 98 mpd DAPell14QRDAa0bA=a+Dba2Db2=1APell1QRD1APell1QRD
100 99 ex DAPell14QRDAa0bA=a+Dba2Db2=1APell1QRD1APell1QRD
101 100 rexlimdvva DAPell14QRDAa0bA=a+Dba2Db2=1APell1QRD1APell1QRD
102 101 expimpd DAPell14QRDAa0bA=a+Dba2Db2=1APell1QRD1APell1QRD
103 2 102 mpd DAPell14QRDAPell1QRD1APell1QRD