Metamath Proof Explorer


Theorem pellfundglb

Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfundglb D A PellFund D < A x Pell1QR D PellFund D x x < A

Proof

Step Hyp Ref Expression
1 pellfundval D PellFund D = sup a Pell14QR D | 1 < a <
2 1 3ad2ant1 D A PellFund D < A PellFund D = sup a Pell14QR D | 1 < a <
3 simp3 D A PellFund D < A PellFund D < A
4 2 3 eqbrtrrd D A PellFund D < A sup a Pell14QR D | 1 < a < < A
5 pellfundre D PellFund D
6 5 3ad2ant1 D A PellFund D < A PellFund D
7 2 6 eqeltrrd D A PellFund D < A sup a Pell14QR D | 1 < a <
8 simp2 D A PellFund D < A A
9 7 8 ltnled D A PellFund D < A sup a Pell14QR D | 1 < a < < A ¬ A sup a Pell14QR D | 1 < a <
10 4 9 mpbid D A PellFund D < A ¬ A sup a Pell14QR D | 1 < a <
11 ssrab2 a Pell14QR D | 1 < a Pell14QR D
12 pell14qrre D a Pell14QR D a
13 12 ex D a Pell14QR D a
14 13 ssrdv D Pell14QR D
15 14 3ad2ant1 D A PellFund D < A Pell14QR D
16 11 15 sstrid D A PellFund D < A a Pell14QR D | 1 < a
17 pell1qrss14 D Pell1QR D Pell14QR D
18 17 3ad2ant1 D A PellFund D < A Pell1QR D Pell14QR D
19 pellqrex D a Pell1QR D 1 < a
20 19 3ad2ant1 D A PellFund D < A a Pell1QR D 1 < a
21 ssrexv Pell1QR D Pell14QR D a Pell1QR D 1 < a a Pell14QR D 1 < a
22 18 20 21 sylc D A PellFund D < A a Pell14QR D 1 < a
23 rabn0 a Pell14QR D | 1 < a a Pell14QR D 1 < a
24 22 23 sylibr D A PellFund D < A a Pell14QR D | 1 < a
25 infmrgelbi a Pell14QR D | 1 < a a Pell14QR D | 1 < a A x a Pell14QR D | 1 < a A x A sup a Pell14QR D | 1 < a <
26 25 ex a Pell14QR D | 1 < a a Pell14QR D | 1 < a A x a Pell14QR D | 1 < a A x A sup a Pell14QR D | 1 < a <
27 16 24 8 26 syl3anc D A PellFund D < A x a Pell14QR D | 1 < a A x A sup a Pell14QR D | 1 < a <
28 10 27 mtod D A PellFund D < A ¬ x a Pell14QR D | 1 < a A x
29 rexnal x a Pell14QR D | 1 < a ¬ A x ¬ x a Pell14QR D | 1 < a A x
30 28 29 sylibr D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x
31 breq2 a = x 1 < a 1 < x
32 31 elrab x a Pell14QR D | 1 < a x Pell14QR D 1 < x
33 simprl D A PellFund D < A x Pell14QR D 1 < x x Pell14QR D
34 1red D A PellFund D < A x Pell14QR D 1 < x 1
35 simpl1 D A PellFund D < A x Pell14QR D 1 < x D
36 pell14qrre D x Pell14QR D x
37 35 33 36 syl2anc D A PellFund D < A x Pell14QR D 1 < x x
38 simprr D A PellFund D < A x Pell14QR D 1 < x 1 < x
39 34 37 38 ltled D A PellFund D < A x Pell14QR D 1 < x 1 x
40 33 39 jca D A PellFund D < A x Pell14QR D 1 < x x Pell14QR D 1 x
41 elpell1qr2 D x Pell1QR D x Pell14QR D 1 x
42 35 41 syl D A PellFund D < A x Pell14QR D 1 < x x Pell1QR D x Pell14QR D 1 x
43 40 42 mpbird D A PellFund D < A x Pell14QR D 1 < x x Pell1QR D
44 32 43 sylan2b D A PellFund D < A x a Pell14QR D | 1 < a x Pell1QR D
45 44 adantrr D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x x Pell1QR D
46 simpl1 D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x D
47 simprl D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x x a Pell14QR D | 1 < a
48 11 47 sseldi D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x x Pell14QR D
49 simpr x Pell14QR D 1 < x 1 < x
50 49 a1i D A PellFund D < A x Pell14QR D 1 < x 1 < x
51 32 50 syl5bi D A PellFund D < A x a Pell14QR D | 1 < a 1 < x
52 51 imp D A PellFund D < A x a Pell14QR D | 1 < a 1 < x
53 52 adantrr D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x 1 < x
54 pellfundlb D x Pell14QR D 1 < x PellFund D x
55 46 48 53 54 syl3anc D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x PellFund D x
56 simprr D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x ¬ A x
57 15 adantr D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x Pell14QR D
58 57 48 sseldd D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x x
59 simpl2 D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x A
60 58 59 ltnled D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x x < A ¬ A x
61 56 60 mpbird D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x x < A
62 55 61 jca D A PellFund D < A x a Pell14QR D | 1 < a ¬ A x PellFund D x x < A
63 30 45 62 reximssdv D A PellFund D < A x Pell1QR D PellFund D x x < A