Metamath Proof Explorer


Theorem pellfundglb

Description: If a real is larger than the fundamental solution, there is a nontrivial solution less than it. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pellfundglb DAPellFundD<AxPell1QRDPellFundDxx<A

Proof

Step Hyp Ref Expression
1 pellfundval DPellFundD=supaPell14QRD|1<a<
2 1 3ad2ant1 DAPellFundD<APellFundD=supaPell14QRD|1<a<
3 simp3 DAPellFundD<APellFundD<A
4 2 3 eqbrtrrd DAPellFundD<AsupaPell14QRD|1<a<<A
5 pellfundre DPellFundD
6 5 3ad2ant1 DAPellFundD<APellFundD
7 2 6 eqeltrrd DAPellFundD<AsupaPell14QRD|1<a<
8 simp2 DAPellFundD<AA
9 7 8 ltnled DAPellFundD<AsupaPell14QRD|1<a<<A¬AsupaPell14QRD|1<a<
10 4 9 mpbid DAPellFundD<A¬AsupaPell14QRD|1<a<
11 ssrab2 aPell14QRD|1<aPell14QRD
12 pell14qrre DaPell14QRDa
13 12 ex DaPell14QRDa
14 13 ssrdv DPell14QRD
15 14 3ad2ant1 DAPellFundD<APell14QRD
16 11 15 sstrid DAPellFundD<AaPell14QRD|1<a
17 pell1qrss14 DPell1QRDPell14QRD
18 17 3ad2ant1 DAPellFundD<APell1QRDPell14QRD
19 pellqrex DaPell1QRD1<a
20 19 3ad2ant1 DAPellFundD<AaPell1QRD1<a
21 ssrexv Pell1QRDPell14QRDaPell1QRD1<aaPell14QRD1<a
22 18 20 21 sylc DAPellFundD<AaPell14QRD1<a
23 rabn0 aPell14QRD|1<aaPell14QRD1<a
24 22 23 sylibr DAPellFundD<AaPell14QRD|1<a
25 infmrgelbi aPell14QRD|1<aaPell14QRD|1<aAxaPell14QRD|1<aAxAsupaPell14QRD|1<a<
26 25 ex aPell14QRD|1<aaPell14QRD|1<aAxaPell14QRD|1<aAxAsupaPell14QRD|1<a<
27 16 24 8 26 syl3anc DAPellFundD<AxaPell14QRD|1<aAxAsupaPell14QRD|1<a<
28 10 27 mtod DAPellFundD<A¬xaPell14QRD|1<aAx
29 rexnal xaPell14QRD|1<a¬Ax¬xaPell14QRD|1<aAx
30 28 29 sylibr DAPellFundD<AxaPell14QRD|1<a¬Ax
31 breq2 a=x1<a1<x
32 31 elrab xaPell14QRD|1<axPell14QRD1<x
33 simprl DAPellFundD<AxPell14QRD1<xxPell14QRD
34 1red DAPellFundD<AxPell14QRD1<x1
35 simpl1 DAPellFundD<AxPell14QRD1<xD
36 pell14qrre DxPell14QRDx
37 35 33 36 syl2anc DAPellFundD<AxPell14QRD1<xx
38 simprr DAPellFundD<AxPell14QRD1<x1<x
39 34 37 38 ltled DAPellFundD<AxPell14QRD1<x1x
40 33 39 jca DAPellFundD<AxPell14QRD1<xxPell14QRD1x
41 elpell1qr2 DxPell1QRDxPell14QRD1x
42 35 41 syl DAPellFundD<AxPell14QRD1<xxPell1QRDxPell14QRD1x
43 40 42 mpbird DAPellFundD<AxPell14QRD1<xxPell1QRD
44 32 43 sylan2b DAPellFundD<AxaPell14QRD|1<axPell1QRD
45 44 adantrr DAPellFundD<AxaPell14QRD|1<a¬AxxPell1QRD
46 simpl1 DAPellFundD<AxaPell14QRD|1<a¬AxD
47 simprl DAPellFundD<AxaPell14QRD|1<a¬AxxaPell14QRD|1<a
48 11 47 sselid DAPellFundD<AxaPell14QRD|1<a¬AxxPell14QRD
49 simpr xPell14QRD1<x1<x
50 49 a1i DAPellFundD<AxPell14QRD1<x1<x
51 32 50 biimtrid DAPellFundD<AxaPell14QRD|1<a1<x
52 51 imp DAPellFundD<AxaPell14QRD|1<a1<x
53 52 adantrr DAPellFundD<AxaPell14QRD|1<a¬Ax1<x
54 pellfundlb DxPell14QRD1<xPellFundDx
55 46 48 53 54 syl3anc DAPellFundD<AxaPell14QRD|1<a¬AxPellFundDx
56 simprr DAPellFundD<AxaPell14QRD|1<a¬Ax¬Ax
57 15 adantr DAPellFundD<AxaPell14QRD|1<a¬AxPell14QRD
58 57 48 sseldd DAPellFundD<AxaPell14QRD|1<a¬Axx
59 simpl2 DAPellFundD<AxaPell14QRD|1<a¬AxA
60 58 59 ltnled DAPellFundD<AxaPell14QRD|1<a¬Axx<A¬Ax
61 56 60 mpbird DAPellFundD<AxaPell14QRD|1<a¬Axx<A
62 55 61 jca DAPellFundD<AxaPell14QRD|1<a¬AxPellFundDxx<A
63 30 45 62 reximssdv DAPellFundD<AxPell1QRDPellFundDxx<A