Database
REAL AND COMPLEX NUMBERS
Words over a set
Subwords of concatenations
pfxccatin12lem3
Next ⟩
pfxccatin12
Metamath Proof Explorer
Ascii
Unicode
Theorem
pfxccatin12lem3
Description:
Lemma 3 for
pfxccatin12
.
(Contributed by
AV
, 30-Mar-2018)
(Revised by
AV
, 27-May-2018)
Ref
Expression
Hypothesis
swrdccatin2.l
⊢
L
=
A
Assertion
pfxccatin12lem3
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
++
B
substr
M
N
K
=
A
substr
M
L
K
Proof
Step
Hyp
Ref
Expression
1
swrdccatin2.l
⊢
L
=
A
2
simpll
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
∈
Word
V
∧
B
∈
Word
V
3
elfzo0
⊢
K
∈
0
..^
L
−
M
↔
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
4
lencl
⊢
A
∈
Word
V
→
A
∈
ℕ
0
5
elfz2nn0
⊢
M
∈
0
…
L
↔
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
6
nn0addcl
⊢
K
∈
ℕ
0
∧
M
∈
ℕ
0
→
K
+
M
∈
ℕ
0
7
6
ex
⊢
K
∈
ℕ
0
→
M
∈
ℕ
0
→
K
+
M
∈
ℕ
0
8
7
3ad2ant1
⊢
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
M
∈
ℕ
0
→
K
+
M
∈
ℕ
0
9
8
com12
⊢
M
∈
ℕ
0
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
10
9
3ad2ant1
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
11
10
imp
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
∧
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
12
elnnz
⊢
L
−
M
∈
ℕ
↔
L
−
M
∈
ℤ
∧
0
<
L
−
M
13
nn0re
⊢
M
∈
ℕ
0
→
M
∈
ℝ
14
nn0re
⊢
L
∈
ℕ
0
→
L
∈
ℝ
15
posdif
⊢
M
∈
ℝ
∧
L
∈
ℝ
→
M
<
L
↔
0
<
L
−
M
16
13
14
15
syl2an
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
M
<
L
↔
0
<
L
−
M
17
elnn0z
⊢
M
∈
ℕ
0
↔
M
∈
ℤ
∧
0
≤
M
18
0re
⊢
0
∈
ℝ
19
zre
⊢
M
∈
ℤ
→
M
∈
ℝ
20
lelttr
⊢
0
∈
ℝ
∧
M
∈
ℝ
∧
L
∈
ℝ
→
0
≤
M
∧
M
<
L
→
0
<
L
21
18
19
14
20
mp3an3an
⊢
M
∈
ℤ
∧
L
∈
ℕ
0
→
0
≤
M
∧
M
<
L
→
0
<
L
22
nn0z
⊢
L
∈
ℕ
0
→
L
∈
ℤ
23
22
anim1i
⊢
L
∈
ℕ
0
∧
0
<
L
→
L
∈
ℤ
∧
0
<
L
24
elnnz
⊢
L
∈
ℕ
↔
L
∈
ℤ
∧
0
<
L
25
23
24
sylibr
⊢
L
∈
ℕ
0
∧
0
<
L
→
L
∈
ℕ
26
25
ex
⊢
L
∈
ℕ
0
→
0
<
L
→
L
∈
ℕ
27
26
adantl
⊢
M
∈
ℤ
∧
L
∈
ℕ
0
→
0
<
L
→
L
∈
ℕ
28
21
27
syld
⊢
M
∈
ℤ
∧
L
∈
ℕ
0
→
0
≤
M
∧
M
<
L
→
L
∈
ℕ
29
28
expd
⊢
M
∈
ℤ
∧
L
∈
ℕ
0
→
0
≤
M
→
M
<
L
→
L
∈
ℕ
30
29
impancom
⊢
M
∈
ℤ
∧
0
≤
M
→
L
∈
ℕ
0
→
M
<
L
→
L
∈
ℕ
31
17
30
sylbi
⊢
M
∈
ℕ
0
→
L
∈
ℕ
0
→
M
<
L
→
L
∈
ℕ
32
31
imp
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
M
<
L
→
L
∈
ℕ
33
16
32
sylbird
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
0
<
L
−
M
→
L
∈
ℕ
34
33
com12
⊢
0
<
L
−
M
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
L
∈
ℕ
35
12
34
simplbiim
⊢
L
−
M
∈
ℕ
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
L
∈
ℕ
36
35
3ad2ant2
⊢
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
L
∈
ℕ
37
36
com12
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
L
∈
ℕ
38
37
3adant3
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
L
∈
ℕ
39
38
imp
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
∧
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
L
∈
ℕ
40
nn0re
⊢
K
∈
ℕ
0
→
K
∈
ℝ
41
40
adantr
⊢
K
∈
ℕ
0
∧
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
∈
ℝ
42
13
3ad2ant1
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
M
∈
ℝ
43
42
adantl
⊢
K
∈
ℕ
0
∧
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
M
∈
ℝ
44
14
3ad2ant2
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
L
∈
ℝ
45
44
adantl
⊢
K
∈
ℕ
0
∧
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
L
∈
ℝ
46
41
43
45
ltaddsubd
⊢
K
∈
ℕ
0
∧
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
+
M
<
L
↔
K
<
L
−
M
47
46
exbiri
⊢
K
∈
ℕ
0
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
<
L
−
M
→
K
+
M
<
L
48
47
com23
⊢
K
∈
ℕ
0
→
K
<
L
−
M
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
+
M
<
L
49
48
imp
⊢
K
∈
ℕ
0
∧
K
<
L
−
M
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
+
M
<
L
50
49
3adant2
⊢
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
+
M
<
L
51
50
impcom
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
∧
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
<
L
52
11
39
51
3jca
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
∧
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
53
52
ex
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
54
53
a1d
⊢
M
∈
ℕ
0
∧
L
∈
ℕ
0
∧
M
≤
L
→
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
55
5
54
sylbi
⊢
M
∈
0
…
L
→
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
56
55
imp
⊢
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
57
56
2a1i
⊢
A
=
L
→
L
∈
ℕ
0
→
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
58
eleq1
⊢
A
=
L
→
A
∈
ℕ
0
↔
L
∈
ℕ
0
59
eleq1
⊢
A
=
L
→
A
∈
ℕ
↔
L
∈
ℕ
60
breq2
⊢
A
=
L
→
K
+
M
<
A
↔
K
+
M
<
L
61
59
60
3anbi23d
⊢
A
=
L
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
↔
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
62
61
imbi2d
⊢
A
=
L
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
↔
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
63
62
imbi2d
⊢
A
=
L
→
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
↔
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
L
∈
ℕ
∧
K
+
M
<
L
64
57
58
63
3imtr4d
⊢
A
=
L
→
A
∈
ℕ
0
→
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
65
64
eqcoms
⊢
L
=
A
→
A
∈
ℕ
0
→
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
66
1
4
65
mpsyl
⊢
A
∈
Word
V
→
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
67
66
adantr
⊢
A
∈
Word
V
∧
B
∈
Word
V
→
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
68
67
imp
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
69
68
com12
⊢
K
∈
ℕ
0
∧
L
−
M
∈
ℕ
∧
K
<
L
−
M
→
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
70
3
69
sylbi
⊢
K
∈
0
..^
L
−
M
→
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
71
70
adantl
⊢
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
72
71
impcom
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
73
elfzo0
⊢
K
+
M
∈
0
..^
A
↔
K
+
M
∈
ℕ
0
∧
A
∈
ℕ
∧
K
+
M
<
A
74
72
73
sylibr
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
K
+
M
∈
0
..^
A
75
df-3an
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
K
+
M
∈
0
..^
A
↔
A
∈
Word
V
∧
B
∈
Word
V
∧
K
+
M
∈
0
..^
A
76
2
74
75
sylanbrc
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
∈
Word
V
∧
B
∈
Word
V
∧
K
+
M
∈
0
..^
A
77
ccatval1
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
K
+
M
∈
0
..^
A
→
A
++
B
K
+
M
=
A
K
+
M
78
76
77
syl
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
++
B
K
+
M
=
A
K
+
M
79
1
pfxccatin12lem2c
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
A
++
B
∈
Word
V
∧
M
∈
0
…
N
∧
N
∈
0
…
A
++
B
80
simpl
⊢
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
K
∈
0
..^
N
−
M
81
swrdfv
⊢
A
++
B
∈
Word
V
∧
M
∈
0
…
N
∧
N
∈
0
…
A
++
B
∧
K
∈
0
..^
N
−
M
→
A
++
B
substr
M
N
K
=
A
++
B
K
+
M
82
79
80
81
syl2an
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
++
B
substr
M
N
K
=
A
++
B
K
+
M
83
simplll
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
∈
Word
V
84
simplrl
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
M
∈
0
…
L
85
1
eleq1i
⊢
L
∈
ℕ
0
↔
A
∈
ℕ
0
86
elnn0uz
⊢
L
∈
ℕ
0
↔
L
∈
ℤ
≥
0
87
eluzfz2
⊢
L
∈
ℤ
≥
0
→
L
∈
0
…
L
88
86
87
sylbi
⊢
L
∈
ℕ
0
→
L
∈
0
…
L
89
1
oveq2i
⊢
0
…
L
=
0
…
A
90
88
89
eleqtrdi
⊢
L
∈
ℕ
0
→
L
∈
0
…
A
91
85
90
sylbir
⊢
A
∈
ℕ
0
→
L
∈
0
…
A
92
4
91
syl
⊢
A
∈
Word
V
→
L
∈
0
…
A
93
92
ad3antrrr
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
L
∈
0
…
A
94
simprr
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
K
∈
0
..^
L
−
M
95
swrdfv
⊢
A
∈
Word
V
∧
M
∈
0
…
L
∧
L
∈
0
…
A
∧
K
∈
0
..^
L
−
M
→
A
substr
M
L
K
=
A
K
+
M
96
83
84
93
94
95
syl31anc
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
substr
M
L
K
=
A
K
+
M
97
78
82
96
3eqtr4d
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
∧
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
++
B
substr
M
N
K
=
A
substr
M
L
K
98
97
ex
⊢
A
∈
Word
V
∧
B
∈
Word
V
∧
M
∈
0
…
L
∧
N
∈
L
…
L
+
B
→
K
∈
0
..^
N
−
M
∧
K
∈
0
..^
L
−
M
→
A
++
B
substr
M
N
K
=
A
substr
M
L
K