Metamath Proof Explorer


Theorem pfxccatin12lem3

Description: Lemma 3 for pfxccatin12 . (Contributed by AV, 30-Mar-2018) (Revised by AV, 27-May-2018)

Ref Expression
Hypothesis swrdccatin2.l L=A
Assertion pfxccatin12lem3 AWordVBWordVM0LNLL+BK0..^NMK0..^LMA++BsubstrMNK=AsubstrMLK

Proof

Step Hyp Ref Expression
1 swrdccatin2.l L=A
2 simpll AWordVBWordVM0LNLL+BK0..^NMK0..^LMAWordVBWordV
3 elfzo0 K0..^LMK0LMK<LM
4 lencl AWordVA0
5 elfz2nn0 M0LM0L0ML
6 nn0addcl K0M0K+M0
7 6 ex K0M0K+M0
8 7 3ad2ant1 K0LMK<LMM0K+M0
9 8 com12 M0K0LMK<LMK+M0
10 9 3ad2ant1 M0L0MLK0LMK<LMK+M0
11 10 imp M0L0MLK0LMK<LMK+M0
12 elnnz LMLM0<LM
13 nn0re M0M
14 nn0re L0L
15 posdif MLM<L0<LM
16 13 14 15 syl2an M0L0M<L0<LM
17 elnn0z M0M0M
18 0re 0
19 zre MM
20 lelttr 0ML0MM<L0<L
21 18 19 14 20 mp3an3an ML00MM<L0<L
22 nn0z L0L
23 22 anim1i L00<LL0<L
24 elnnz LL0<L
25 23 24 sylibr L00<LL
26 25 ex L00<LL
27 26 adantl ML00<LL
28 21 27 syld ML00MM<LL
29 28 expd ML00MM<LL
30 29 impancom M0ML0M<LL
31 17 30 sylbi M0L0M<LL
32 31 imp M0L0M<LL
33 16 32 sylbird M0L00<LML
34 33 com12 0<LMM0L0L
35 12 34 simplbiim LMM0L0L
36 35 3ad2ant2 K0LMK<LMM0L0L
37 36 com12 M0L0K0LMK<LML
38 37 3adant3 M0L0MLK0LMK<LML
39 38 imp M0L0MLK0LMK<LML
40 nn0re K0K
41 40 adantr K0M0L0MLK
42 13 3ad2ant1 M0L0MLM
43 42 adantl K0M0L0MLM
44 14 3ad2ant2 M0L0MLL
45 44 adantl K0M0L0MLL
46 41 43 45 ltaddsubd K0M0L0MLK+M<LK<LM
47 46 exbiri K0M0L0MLK<LMK+M<L
48 47 com23 K0K<LMM0L0MLK+M<L
49 48 imp K0K<LMM0L0MLK+M<L
50 49 3adant2 K0LMK<LMM0L0MLK+M<L
51 50 impcom M0L0MLK0LMK<LMK+M<L
52 11 39 51 3jca M0L0MLK0LMK<LMK+M0LK+M<L
53 52 ex M0L0MLK0LMK<LMK+M0LK+M<L
54 53 a1d M0L0MLNLL+BK0LMK<LMK+M0LK+M<L
55 5 54 sylbi M0LNLL+BK0LMK<LMK+M0LK+M<L
56 55 imp M0LNLL+BK0LMK<LMK+M0LK+M<L
57 56 2a1i A=LL0M0LNLL+BK0LMK<LMK+M0LK+M<L
58 eleq1 A=LA0L0
59 eleq1 A=LAL
60 breq2 A=LK+M<AK+M<L
61 59 60 3anbi23d A=LK+M0AK+M<AK+M0LK+M<L
62 61 imbi2d A=LK0LMK<LMK+M0AK+M<AK0LMK<LMK+M0LK+M<L
63 62 imbi2d A=LM0LNLL+BK0LMK<LMK+M0AK+M<AM0LNLL+BK0LMK<LMK+M0LK+M<L
64 57 58 63 3imtr4d A=LA0M0LNLL+BK0LMK<LMK+M0AK+M<A
65 64 eqcoms L=AA0M0LNLL+BK0LMK<LMK+M0AK+M<A
66 1 4 65 mpsyl AWordVM0LNLL+BK0LMK<LMK+M0AK+M<A
67 66 adantr AWordVBWordVM0LNLL+BK0LMK<LMK+M0AK+M<A
68 67 imp AWordVBWordVM0LNLL+BK0LMK<LMK+M0AK+M<A
69 68 com12 K0LMK<LMAWordVBWordVM0LNLL+BK+M0AK+M<A
70 3 69 sylbi K0..^LMAWordVBWordVM0LNLL+BK+M0AK+M<A
71 70 adantl K0..^NMK0..^LMAWordVBWordVM0LNLL+BK+M0AK+M<A
72 71 impcom AWordVBWordVM0LNLL+BK0..^NMK0..^LMK+M0AK+M<A
73 elfzo0 K+M0..^AK+M0AK+M<A
74 72 73 sylibr AWordVBWordVM0LNLL+BK0..^NMK0..^LMK+M0..^A
75 df-3an AWordVBWordVK+M0..^AAWordVBWordVK+M0..^A
76 2 74 75 sylanbrc AWordVBWordVM0LNLL+BK0..^NMK0..^LMAWordVBWordVK+M0..^A
77 ccatval1 AWordVBWordVK+M0..^AA++BK+M=AK+M
78 76 77 syl AWordVBWordVM0LNLL+BK0..^NMK0..^LMA++BK+M=AK+M
79 1 pfxccatin12lem2c AWordVBWordVM0LNLL+BA++BWordVM0NN0A++B
80 simpl K0..^NMK0..^LMK0..^NM
81 swrdfv A++BWordVM0NN0A++BK0..^NMA++BsubstrMNK=A++BK+M
82 79 80 81 syl2an AWordVBWordVM0LNLL+BK0..^NMK0..^LMA++BsubstrMNK=A++BK+M
83 simplll AWordVBWordVM0LNLL+BK0..^NMK0..^LMAWordV
84 simplrl AWordVBWordVM0LNLL+BK0..^NMK0..^LMM0L
85 1 eleq1i L0A0
86 elnn0uz L0L0
87 eluzfz2 L0L0L
88 86 87 sylbi L0L0L
89 1 oveq2i 0L=0A
90 88 89 eleqtrdi L0L0A
91 85 90 sylbir A0L0A
92 4 91 syl AWordVL0A
93 92 ad3antrrr AWordVBWordVM0LNLL+BK0..^NMK0..^LML0A
94 simprr AWordVBWordVM0LNLL+BK0..^NMK0..^LMK0..^LM
95 swrdfv AWordVM0LL0AK0..^LMAsubstrMLK=AK+M
96 83 84 93 94 95 syl31anc AWordVBWordVM0LNLL+BK0..^NMK0..^LMAsubstrMLK=AK+M
97 78 82 96 3eqtr4d AWordVBWordVM0LNLL+BK0..^NMK0..^LMA++BsubstrMNK=AsubstrMLK
98 97 ex AWordVBWordVM0LNLL+BK0..^NMK0..^LMA++BsubstrMNK=AsubstrMLK