Metamath Proof Explorer


Theorem php3OLD

Description: Obsolete version of php3 as of 26-Nov-2024. (Contributed by NM, 22-Aug-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion php3OLD AFinBABA

Proof

Step Hyp Ref Expression
1 isfi AFinxωAx
2 relen Rel
3 2 brrelex1i AxAV
4 pssss BABA
5 ssdomg AVBABA
6 5 imp AVBABA
7 3 4 6 syl2an AxBABA
8 7 adantll xωAxBABA
9 bren Axff:A1-1 ontox
10 imass2 BAfBfA
11 4 10 syl BAfBfA
12 11 adantl f:A1-1 ontoxBAfBfA
13 pssnel BAyyA¬yB
14 eldif yAByA¬yB
15 f1ofn f:A1-1 ontoxfFnA
16 difss ABA
17 fnfvima fFnAABAyABfyfAB
18 17 3expia fFnAABAyABfyfAB
19 15 16 18 sylancl f:A1-1 ontoxyABfyfAB
20 dff1o3 f:A1-1 ontoxf:AontoxFunf-1
21 imadif Funf-1fAB=fAfB
22 20 21 simplbiim f:A1-1 ontoxfAB=fAfB
23 22 eleq2d f:A1-1 ontoxfyfABfyfAfB
24 19 23 sylibd f:A1-1 ontoxyABfyfAfB
25 n0i fyfAfB¬fAfB=
26 24 25 syl6 f:A1-1 ontoxyAB¬fAfB=
27 14 26 biimtrrid f:A1-1 ontoxyA¬yB¬fAfB=
28 27 exlimdv f:A1-1 ontoxyyA¬yB¬fAfB=
29 28 imp f:A1-1 ontoxyyA¬yB¬fAfB=
30 13 29 sylan2 f:A1-1 ontoxBA¬fAfB=
31 ssdif0 fAfBfAfB=
32 30 31 sylnibr f:A1-1 ontoxBA¬fAfB
33 dfpss3 fBfAfBfA¬fAfB
34 12 32 33 sylanbrc f:A1-1 ontoxBAfBfA
35 imadmrn fdomf=ranf
36 f1odm f:A1-1 ontoxdomf=A
37 36 imaeq2d f:A1-1 ontoxfdomf=fA
38 f1ofo f:A1-1 ontoxf:Aontox
39 forn f:Aontoxranf=x
40 38 39 syl f:A1-1 ontoxranf=x
41 35 37 40 3eqtr3a f:A1-1 ontoxfA=x
42 41 psseq2d f:A1-1 ontoxfBfAfBx
43 42 adantr f:A1-1 ontoxBAfBfAfBx
44 34 43 mpbid f:A1-1 ontoxBAfBx
45 php xωfBx¬xfB
46 44 45 sylan2 xωf:A1-1 ontoxBA¬xfB
47 f1of1 f:A1-1 ontoxf:A1-1x
48 f1ores f:A1-1xBAfB:B1-1 ontofB
49 47 4 48 syl2an f:A1-1 ontoxBAfB:B1-1 ontofB
50 vex fV
51 50 resex fBV
52 f1oeq1 y=fBy:B1-1 ontofBfB:B1-1 ontofB
53 51 52 spcev fB:B1-1 ontofByy:B1-1 ontofB
54 bren BfByy:B1-1 ontofB
55 53 54 sylibr fB:B1-1 ontofBBfB
56 49 55 syl f:A1-1 ontoxBABfB
57 entr xBBfBxfB
58 57 expcom BfBxBxfB
59 56 58 syl f:A1-1 ontoxBAxBxfB
60 59 adantl xωf:A1-1 ontoxBAxBxfB
61 46 60 mtod xωf:A1-1 ontoxBA¬xB
62 61 exp32 xωf:A1-1 ontoxBA¬xB
63 62 exlimdv xωff:A1-1 ontoxBA¬xB
64 9 63 biimtrid xωAxBA¬xB
65 64 imp31 xωAxBA¬xB
66 entr BAAxBx
67 66 ex BAAxBx
68 ensym BxxB
69 67 68 syl6com AxBAxB
70 69 ad2antlr xωAxBABAxB
71 65 70 mtod xωAxBA¬BA
72 brsdom BABA¬BA
73 8 71 72 sylanbrc xωAxBABA
74 73 exp31 xωAxBABA
75 74 rexlimiv xωAxBABA
76 1 75 sylbi AFinBABA
77 76 imp AFinBABA