Metamath Proof Explorer


Theorem prjcrv0

Description: The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024)

Ref Expression
Hypotheses prjcrv0.y Y = 0 N mPoly K
prjcrv0.0 0 ˙ = 0 Y
prjcrv0.p P = N ℙ𝕣𝕠𝕛 n K
prjcrv0.n φ N 0
prjcrv0.k φ K Field
Assertion prjcrv0 Could not format assertion : No typesetting found for |- ( ph -> ( ( N PrjCrv K ) ` .0. ) = P ) with typecode |-

Proof

Step Hyp Ref Expression
1 prjcrv0.y Y = 0 N mPoly K
2 prjcrv0.0 0 ˙ = 0 Y
3 prjcrv0.p P = N ℙ𝕣𝕠𝕛 n K
4 prjcrv0.n φ N 0
5 prjcrv0.k φ K Field
6 eqid 0 N mHomP K = 0 N mHomP K
7 eqid 0 N eval K = 0 N eval K
8 eqid 0 K = 0 K
9 funmpt Fun n 0 f Base Y | f supp 0 K g h 0 0 N | h -1 Fin | fld 𝑠 0 g = n
10 eqid Base Y = Base Y
11 eqid h 0 0 N | h -1 Fin = h 0 0 N | h -1 Fin
12 ovexd φ 0 N V
13 6 1 10 8 11 12 5 mhpfval φ 0 N mHomP K = n 0 f Base Y | f supp 0 K g h 0 0 N | h -1 Fin | fld 𝑠 0 g = n
14 13 funeqd φ Fun 0 N mHomP K Fun n 0 f Base Y | f supp 0 K g h 0 0 N | h -1 Fin | fld 𝑠 0 g = n
15 9 14 mpbiri φ Fun 0 N mHomP K
16 5 fldcrngd φ K CRing
17 16 crnggrpd φ K Grp
18 1 11 8 2 12 17 mpl0 φ 0 ˙ = h 0 0 N | h -1 Fin × 0 K
19 0nn0 0 0
20 19 a1i φ 0 0
21 6 8 11 12 17 20 mhp0cl φ h 0 0 N | h -1 Fin × 0 K 0 N mHomP K 0
22 18 21 eqeltrd φ 0 ˙ 0 N mHomP K 0
23 elunirn2 Fun 0 N mHomP K 0 ˙ 0 N mHomP K 0 0 ˙ ran 0 N mHomP K
24 15 22 23 syl2anc φ 0 ˙ ran 0 N mHomP K
25 6 7 3 8 4 5 24 prjcrvval Could not format ( ph -> ( ( N PrjCrv K ) ` .0. ) = { p e. P | ( ( ( ( 0 ... N ) eval K ) ` .0. ) " p ) = { ( 0g ` K ) } } ) : No typesetting found for |- ( ph -> ( ( N PrjCrv K ) ` .0. ) = { p e. P | ( ( ( ( 0 ... N ) eval K ) ` .0. ) " p ) = { ( 0g ` K ) } } ) with typecode |-
26 eqid Base K = Base K
27 ovexd φ p P 0 N V
28 16 adantr φ p P K CRing
29 7 26 1 8 2 27 28 evl0 φ p P 0 N eval K 0 ˙ = Base K 0 N × 0 K
30 29 imaeq1d φ p P 0 N eval K 0 ˙ p = Base K 0 N × 0 K p
31 3 eleq2i p P p N ℙ𝕣𝕠𝕛 n K
32 31 biimpi p P p N ℙ𝕣𝕠𝕛 n K
33 32 adantl φ p P p N ℙ𝕣𝕠𝕛 n K
34 4 adantr φ p P N 0
35 isfld K Field K DivRing K CRing
36 35 simplbi K Field K DivRing
37 5 36 syl φ K DivRing
38 37 adantr φ p P K DivRing
39 prjspnval N 0 K DivRing N ℙ𝕣𝕠𝕛 n K = ℙ𝕣𝕠𝕛 K freeLMod 0 N
40 34 38 39 syl2anc φ p P N ℙ𝕣𝕠𝕛 n K = ℙ𝕣𝕠𝕛 K freeLMod 0 N
41 eqid K freeLMod 0 N = K freeLMod 0 N
42 41 frlmlvec K DivRing 0 N V K freeLMod 0 N LVec
43 37 12 42 syl2anc φ K freeLMod 0 N LVec
44 43 adantr φ p P K freeLMod 0 N LVec
45 eqid 0 K freeLMod 0 N = 0 K freeLMod 0 N
46 eqid Base K freeLMod 0 N 0 K freeLMod 0 N = Base K freeLMod 0 N 0 K freeLMod 0 N
47 eqid LSpan K freeLMod 0 N = LSpan K freeLMod 0 N
48 45 46 47 prjspval2 K freeLMod 0 N LVec ℙ𝕣𝕠𝕛 K freeLMod 0 N = a Base K freeLMod 0 N 0 K freeLMod 0 N LSpan K freeLMod 0 N a 0 K freeLMod 0 N
49 44 48 syl φ p P ℙ𝕣𝕠𝕛 K freeLMod 0 N = a Base K freeLMod 0 N 0 K freeLMod 0 N LSpan K freeLMod 0 N a 0 K freeLMod 0 N
50 40 49 eqtrd φ p P N ℙ𝕣𝕠𝕛 n K = a Base K freeLMod 0 N 0 K freeLMod 0 N LSpan K freeLMod 0 N a 0 K freeLMod 0 N
51 33 50 eleqtrd φ p P p a Base K freeLMod 0 N 0 K freeLMod 0 N LSpan K freeLMod 0 N a 0 K freeLMod 0 N
52 eliun p a Base K freeLMod 0 N 0 K freeLMod 0 N LSpan K freeLMod 0 N a 0 K freeLMod 0 N a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N
53 51 52 sylib φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N
54 eqid k Base K 0 N | finSupp 0 K k = k Base K 0 N | finSupp 0 K k
55 41 26 8 54 frlmbas K Field 0 N V k Base K 0 N | finSupp 0 K k = Base K freeLMod 0 N
56 5 12 55 syl2anc φ k Base K 0 N | finSupp 0 K k = Base K freeLMod 0 N
57 ssrab2 k Base K 0 N | finSupp 0 K k Base K 0 N
58 56 57 eqsstrrdi φ Base K freeLMod 0 N Base K 0 N
59 58 ad2antrr φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N Base K freeLMod 0 N Base K 0 N
60 eldifi a Base K freeLMod 0 N 0 K freeLMod 0 N a Base K freeLMod 0 N
61 60 adantl φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N a Base K freeLMod 0 N
62 61 adantrr φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N a Base K freeLMod 0 N
63 59 62 sseldd φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N a Base K 0 N
64 velsn p LSpan K freeLMod 0 N a 0 K freeLMod 0 N p = LSpan K freeLMod 0 N a 0 K freeLMod 0 N
65 64 anbi2i a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N a Base K freeLMod 0 N 0 K freeLMod 0 N p = LSpan K freeLMod 0 N a 0 K freeLMod 0 N
66 43 lveclmodd φ K freeLMod 0 N LMod
67 66 ad2antrr φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N K freeLMod 0 N LMod
68 eqid Base K freeLMod 0 N = Base K freeLMod 0 N
69 68 47 lspsnid K freeLMod 0 N LMod a Base K freeLMod 0 N a LSpan K freeLMod 0 N a
70 67 61 69 syl2anc φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N a LSpan K freeLMod 0 N a
71 eldifn a Base K freeLMod 0 N 0 K freeLMod 0 N ¬ a 0 K freeLMod 0 N
72 71 adantl φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N ¬ a 0 K freeLMod 0 N
73 70 72 eldifd φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N a LSpan K freeLMod 0 N a 0 K freeLMod 0 N
74 eleq2 p = LSpan K freeLMod 0 N a 0 K freeLMod 0 N a p a LSpan K freeLMod 0 N a 0 K freeLMod 0 N
75 73 74 syl5ibrcom φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p = LSpan K freeLMod 0 N a 0 K freeLMod 0 N a p
76 75 impr φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p = LSpan K freeLMod 0 N a 0 K freeLMod 0 N a p
77 65 76 sylan2b φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N a p
78 63 77 elind φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N a Base K 0 N p
79 78 ne0d φ p P a Base K freeLMod 0 N 0 K freeLMod 0 N p LSpan K freeLMod 0 N a 0 K freeLMod 0 N Base K 0 N p
80 53 79 rexlimddv φ p P Base K 0 N p
81 xpima2 Base K 0 N p Base K 0 N × 0 K p = 0 K
82 80 81 syl φ p P Base K 0 N × 0 K p = 0 K
83 30 82 eqtrd φ p P 0 N eval K 0 ˙ p = 0 K
84 83 rabeqcda φ p P | 0 N eval K 0 ˙ p = 0 K = P
85 25 84 eqtrd Could not format ( ph -> ( ( N PrjCrv K ) ` .0. ) = P ) : No typesetting found for |- ( ph -> ( ( N PrjCrv K ) ` .0. ) = P ) with typecode |-