| Step |
Hyp |
Ref |
Expression |
| 1 |
|
proththd.n |
|
| 2 |
|
proththd.k |
|
| 3 |
|
proththd.p |
|
| 4 |
|
proththd.l |
|
| 5 |
|
proththd.x |
|
| 6 |
|
2nn |
|
| 7 |
6
|
a1i |
|
| 8 |
1
|
nnnn0d |
|
| 9 |
7 8
|
nnexpcld |
|
| 10 |
2
|
nncnd |
|
| 11 |
9
|
nncnd |
|
| 12 |
10 11
|
mulcomd |
|
| 13 |
12
|
oveq1d |
|
| 14 |
3 13
|
eqtrd |
|
| 15 |
|
simpr |
|
| 16 |
|
2prm |
|
| 17 |
16
|
a1i |
|
| 18 |
1
|
adantr |
|
| 19 |
|
prmdvdsexpb |
|
| 20 |
15 17 18 19
|
syl3anc |
|
| 21 |
1 2 3
|
proththdlem |
|
| 22 |
21
|
simp1d |
|
| 23 |
22
|
nncnd |
|
| 24 |
|
peano2cnm |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
adantr |
|
| 27 |
|
2cnd |
|
| 28 |
|
2ne0 |
|
| 29 |
28
|
a1i |
|
| 30 |
26 27 29
|
divcan1d |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
oveq2d |
|
| 33 |
|
zcn |
|
| 34 |
33
|
adantl |
|
| 35 |
|
2nn0 |
|
| 36 |
35
|
a1i |
|
| 37 |
21
|
simp3d |
|
| 38 |
37
|
nnnn0d |
|
| 39 |
38
|
adantr |
|
| 40 |
34 36 39
|
expmuld |
|
| 41 |
32 40
|
eqtrd |
|
| 42 |
41
|
ad4ant13 |
|
| 43 |
42
|
oveq1d |
|
| 44 |
38
|
adantr |
|
| 45 |
44
|
anim1i |
|
| 46 |
45
|
ancomd |
|
| 47 |
|
zexpcl |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
adantr |
|
| 50 |
22
|
nnrpd |
|
| 51 |
50
|
ad3antrrr |
|
| 52 |
21
|
simp2d |
|
| 53 |
52
|
ad3antrrr |
|
| 54 |
|
simpr |
|
| 55 |
49 51 53 54
|
modexp2m1d |
|
| 56 |
43 55
|
eqtrd |
|
| 57 |
|
oveq2 |
|
| 58 |
57
|
eleq1d |
|
| 59 |
58
|
adantl |
|
| 60 |
44 59
|
mpbird |
|
| 61 |
60
|
anim2i |
|
| 62 |
61
|
ancoms |
|
| 63 |
|
zexpcl |
|
| 64 |
62 63
|
syl |
|
| 65 |
64
|
zred |
|
| 66 |
65
|
adantr |
|
| 67 |
|
1red |
|
| 68 |
67
|
renegcld |
|
| 69 |
|
oveq2 |
|
| 70 |
69
|
eqcoms |
|
| 71 |
70
|
oveq2d |
|
| 72 |
71
|
oveq1d |
|
| 73 |
72
|
eqeq1d |
|
| 74 |
73
|
adantl |
|
| 75 |
74
|
adantr |
|
| 76 |
75
|
biimpa |
|
| 77 |
|
eqidd |
|
| 78 |
66 68 67 67 51 76 77
|
modsub12d |
|
| 79 |
78
|
oveq1d |
|
| 80 |
|
peano2zm |
|
| 81 |
64 80
|
syl |
|
| 82 |
22
|
ad2antrr |
|
| 83 |
|
modgcd |
|
| 84 |
81 82 83
|
syl2anc |
|
| 85 |
84
|
adantr |
|
| 86 |
|
ax-1cn |
|
| 87 |
|
negdi2 |
|
| 88 |
87
|
eqcomd |
|
| 89 |
86 86 88
|
mp2an |
|
| 90 |
|
1p1e2 |
|
| 91 |
90
|
negeqi |
|
| 92 |
89 91
|
eqtri |
|
| 93 |
92
|
a1i |
|
| 94 |
93
|
oveq1d |
|
| 95 |
94
|
oveq1d |
|
| 96 |
|
nnnegz |
|
| 97 |
7 96
|
syl |
|
| 98 |
|
modgcd |
|
| 99 |
97 22 98
|
syl2anc |
|
| 100 |
|
2z |
|
| 101 |
22
|
nnzd |
|
| 102 |
|
neggcd |
|
| 103 |
100 101 102
|
sylancr |
|
| 104 |
|
nnz |
|
| 105 |
|
oddm1d2 |
|
| 106 |
104 105
|
syl |
|
| 107 |
106
|
biimprd |
|
| 108 |
|
nnz |
|
| 109 |
107 108
|
impel |
|
| 110 |
|
isoddgcd1 |
|
| 111 |
104 110
|
syl |
|
| 112 |
111
|
adantr |
|
| 113 |
109 112
|
mpbid |
|
| 114 |
113
|
3adant2 |
|
| 115 |
21 114
|
syl |
|
| 116 |
103 115
|
eqtrd |
|
| 117 |
99 116
|
eqtrd |
|
| 118 |
95 117
|
eqtrd |
|
| 119 |
118
|
ad3antrrr |
|
| 120 |
79 85 119
|
3eqtr3d |
|
| 121 |
56 120
|
jca |
|
| 122 |
121
|
ex |
|
| 123 |
122
|
reximdva |
|
| 124 |
123
|
ex |
|
| 125 |
5 124
|
mpid |
|
| 126 |
125
|
adantr |
|
| 127 |
20 126
|
sylbid |
|
| 128 |
127
|
ralrimiva |
|
| 129 |
9 2 4 14 128
|
pockthg |
|