Metamath Proof Explorer


Theorem psercn2

Description: Since by pserulm the series converges uniformly, it is also continuous by ulmcn . (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses pserf.g G=xn0Anxn
pserf.f F=ySj0Gyj
pserf.a φA:0
pserf.r R=supr|seq0+Grdom*<
pserulm.h H=i0ySseq0+Gyi
pserulm.m φM
pserulm.l φM<R
pserulm.y φSabs-10M
Assertion psercn2 φF:Scn

Proof

Step Hyp Ref Expression
1 pserf.g G=xn0Anxn
2 pserf.f F=ySj0Gyj
3 pserf.a φA:0
4 pserf.r R=supr|seq0+Grdom*<
5 pserulm.h H=i0ySseq0+Gyi
6 pserulm.m φM
7 pserulm.l φM<R
8 pserulm.y φSabs-10M
9 nn0uz 0=0
10 0zd φ0
11 cnvimass abs-10Mdomabs
12 absf abs:
13 12 fdmi domabs=
14 11 13 sseqtri abs-10M
15 8 14 sstrdi φS
16 15 adantr φi0S
17 16 resmptd φi0yseq0+GyiS=ySseq0+Gyi
18 simplr φi0yk0iy
19 elfznn0 k0ik0
20 19 adantl φi0yk0ik0
21 1 pserval2 yk0Gyk=Akyk
22 18 20 21 syl2anc φi0yk0iGyk=Akyk
23 simpr φi0i0
24 23 9 eleqtrdi φi0i0
25 24 adantr φi0yi0
26 3 adantr φi0A:0
27 26 ffvelcdmda φi0k0Ak
28 27 adantlr φi0yk0Ak
29 expcl yk0yk
30 29 adantll φi0yk0yk
31 28 30 mulcld φi0yk0Akyk
32 19 31 sylan2 φi0yk0iAkyk
33 22 25 32 fsumser φi0yk=0iAkyk=seq0+Gyi
34 33 mpteq2dva φi0yk=0iAkyk=yseq0+Gyi
35 eqid TopOpenfld=TopOpenfld
36 35 cnfldtopon TopOpenfldTopOn
37 36 a1i φi0TopOpenfldTopOn
38 fzfid φi00iFin
39 36 a1i φi0k0iTopOpenfldTopOn
40 ffvelcdm A:0k0Ak
41 26 19 40 syl2an φi0k0iAk
42 39 39 41 cnmptc φi0k0iyAkTopOpenfldCnTopOpenfld
43 19 adantl φi0k0ik0
44 35 expcn k0yykTopOpenfldCnTopOpenfld
45 43 44 syl φi0k0iyykTopOpenfldCnTopOpenfld
46 35 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
47 46 a1i φi0k0i×TopOpenfld×tTopOpenfldCnTopOpenfld
48 39 42 45 47 cnmpt12f φi0k0iyAkykTopOpenfldCnTopOpenfld
49 35 37 38 48 fsumcn φi0yk=0iAkykTopOpenfldCnTopOpenfld
50 35 cncfcn1 cn=TopOpenfldCnTopOpenfld
51 49 50 eleqtrrdi φi0yk=0iAkyk:cn
52 34 51 eqeltrrd φi0yseq0+Gyi:cn
53 rescncf Syseq0+Gyi:cnyseq0+GyiS:Scn
54 16 52 53 sylc φi0yseq0+GyiS:Scn
55 17 54 eqeltrrd φi0ySseq0+Gyi:Scn
56 55 5 fmptd φH:0Scn
57 1 2 3 4 5 6 7 8 pserulm φHuSF
58 9 10 56 57 ulmcn φF:Scn