Description: Since by pserulm the series converges uniformly, it is also continuous by ulmcn . (Contributed by Mario Carneiro, 3-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pserf.g | |
|
pserf.f | |
||
pserf.a | |
||
pserf.r | |
||
pserulm.h | |
||
pserulm.m | |
||
pserulm.l | |
||
pserulm.y | |
||
Assertion | psercn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pserf.g | |
|
2 | pserf.f | |
|
3 | pserf.a | |
|
4 | pserf.r | |
|
5 | pserulm.h | |
|
6 | pserulm.m | |
|
7 | pserulm.l | |
|
8 | pserulm.y | |
|
9 | nn0uz | |
|
10 | 0zd | |
|
11 | cnvimass | |
|
12 | absf | |
|
13 | 12 | fdmi | |
14 | 11 13 | sseqtri | |
15 | 8 14 | sstrdi | |
16 | 15 | adantr | |
17 | 16 | resmptd | |
18 | simplr | |
|
19 | elfznn0 | |
|
20 | 19 | adantl | |
21 | 1 | pserval2 | |
22 | 18 20 21 | syl2anc | |
23 | simpr | |
|
24 | 23 9 | eleqtrdi | |
25 | 24 | adantr | |
26 | 3 | adantr | |
27 | 26 | ffvelcdmda | |
28 | 27 | adantlr | |
29 | expcl | |
|
30 | 29 | adantll | |
31 | 28 30 | mulcld | |
32 | 19 31 | sylan2 | |
33 | 22 25 32 | fsumser | |
34 | 33 | mpteq2dva | |
35 | eqid | |
|
36 | 35 | cnfldtopon | |
37 | 36 | a1i | |
38 | fzfid | |
|
39 | 36 | a1i | |
40 | ffvelcdm | |
|
41 | 26 19 40 | syl2an | |
42 | 39 39 41 | cnmptc | |
43 | 19 | adantl | |
44 | 35 | expcn | |
45 | 43 44 | syl | |
46 | 35 | mulcn | |
47 | 46 | a1i | |
48 | 39 42 45 47 | cnmpt12f | |
49 | 35 37 38 48 | fsumcn | |
50 | 35 | cncfcn1 | |
51 | 49 50 | eleqtrrdi | |
52 | 34 51 | eqeltrrd | |
53 | rescncf | |
|
54 | 16 52 53 | sylc | |
55 | 17 54 | eqeltrrd | |
56 | 55 5 | fmptd | |
57 | 1 2 3 4 5 6 7 8 | pserulm | |
58 | 9 10 56 57 | ulmcn | |