Metamath Proof Explorer


Theorem psgnfzto1st

Description: The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d D=1N
psgnfzto1st.p P=iDifi=1IifiIi1i
psgnfzto1st.g G=SymGrpD
psgnfzto1st.b B=BaseG
psgnfzto1st.s S=pmSgnD
Assertion psgnfzto1st IDSP=1I+1

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D=1N
2 psgnfzto1st.p P=iDifi=1IifiIi1i
3 psgnfzto1st.g G=SymGrpD
4 psgnfzto1st.b B=BaseG
5 psgnfzto1st.s S=pmSgnD
6 elfz1b I1NININ
7 6 biimpi I1NININ
8 7 1 eleq2s IDININ
9 3ancoma NIINININ
10 8 9 sylibr IDNIIN
11 df-3an NIINNIIN
12 breq1 m=1mN1N
13 id m=1m=1
14 breq2 m=1imi1
15 14 ifbid m=1ifimi1i=ifi1i1i
16 13 15 ifeq12d m=1ifi=1mifimi1i=ifi=11ifi1i1i
17 16 mpteq2dv m=1iDifi=1mifimi1i=iDifi=11ifi1i1i
18 17 fveq2d m=1SiDifi=1mifimi1i=SiDifi=11ifi1i1i
19 oveq1 m=1m+1=1+1
20 19 oveq2d m=11m+1=11+1
21 18 20 eqeq12d m=1SiDifi=1mifimi1i=1m+1SiDifi=11ifi1i1i=11+1
22 12 21 imbi12d m=1mNSiDifi=1mifimi1i=1m+11NSiDifi=11ifi1i1i=11+1
23 breq1 m=nmNnN
24 id m=nm=n
25 breq2 m=nimin
26 25 ifbid m=nifimi1i=ifini1i
27 24 26 ifeq12d m=nifi=1mifimi1i=ifi=1nifini1i
28 27 mpteq2dv m=niDifi=1mifimi1i=iDifi=1nifini1i
29 28 fveq2d m=nSiDifi=1mifimi1i=SiDifi=1nifini1i
30 oveq1 m=nm+1=n+1
31 30 oveq2d m=n1m+1=1n+1
32 29 31 eqeq12d m=nSiDifi=1mifimi1i=1m+1SiDifi=1nifini1i=1n+1
33 23 32 imbi12d m=nmNSiDifi=1mifimi1i=1m+1nNSiDifi=1nifini1i=1n+1
34 breq1 m=n+1mNn+1N
35 id m=n+1m=n+1
36 breq2 m=n+1imin+1
37 36 ifbid m=n+1ifimi1i=ifin+1i1i
38 35 37 ifeq12d m=n+1ifi=1mifimi1i=ifi=1n+1ifin+1i1i
39 38 mpteq2dv m=n+1iDifi=1mifimi1i=iDifi=1n+1ifin+1i1i
40 39 fveq2d m=n+1SiDifi=1mifimi1i=SiDifi=1n+1ifin+1i1i
41 oveq1 m=n+1m+1=n+1+1
42 41 oveq2d m=n+11m+1=1n+1+1
43 40 42 eqeq12d m=n+1SiDifi=1mifimi1i=1m+1SiDifi=1n+1ifin+1i1i=1n+1+1
44 34 43 imbi12d m=n+1mNSiDifi=1mifimi1i=1m+1n+1NSiDifi=1n+1ifin+1i1i=1n+1+1
45 breq1 m=ImNIN
46 id m=Im=I
47 breq2 m=IimiI
48 47 ifbid m=Iifimi1i=ifiIi1i
49 46 48 ifeq12d m=Iifi=1mifimi1i=ifi=1IifiIi1i
50 49 mpteq2dv m=IiDifi=1mifimi1i=iDifi=1IifiIi1i
51 50 2 eqtr4di m=IiDifi=1mifimi1i=P
52 51 fveq2d m=ISiDifi=1mifimi1i=SP
53 oveq1 m=Im+1=I+1
54 53 oveq2d m=I1m+1=1I+1
55 52 54 eqeq12d m=ISiDifi=1mifimi1i=1m+1SP=1I+1
56 45 55 imbi12d m=ImNSiDifi=1mifimi1i=1m+1INSP=1I+1
57 fzfi 1NFin
58 1 57 eqeltri DFin
59 5 psgnid DFinSID=1
60 58 59 ax-mp SID=1
61 eqid 1=1
62 eqid iDifi=11ifi1i1i=iDifi=11ifi1i1i
63 1 62 fzto1st1 1=1iDifi=11ifi1i1i=ID
64 61 63 ax-mp iDifi=11ifi1i1i=ID
65 64 fveq2i SiDifi=11ifi1i1i=SID
66 1p1e2 1+1=2
67 66 oveq2i 11+1=12
68 neg1sqe1 12=1
69 67 68 eqtri 11+1=1
70 60 65 69 3eqtr4i SiDifi=11ifi1i1i=11+1
71 70 2a1i N1NSiDifi=11ifi1i1i=11+1
72 simplr Nnn+1Nn
73 72 peano2nnd Nnn+1Nn+1
74 simpll Nnn+1NN
75 simpr Nnn+1Nn+1N
76 73 74 75 3jca Nnn+1Nn+1Nn+1N
77 elfz1b n+11Nn+1Nn+1N
78 76 77 sylibr Nnn+1Nn+11N
79 78 1 eleqtrrdi Nnn+1Nn+1D
80 1 psgnfzto1stlem nn+1DiDifi=1n+1ifin+1i1i=pmTrspDnn+1iDifi=1nifini1i
81 72 79 80 syl2anc Nnn+1NiDifi=1n+1ifin+1i1i=pmTrspDnn+1iDifi=1nifini1i
82 81 adantlr NnnNSiDifi=1nifini1i=1n+1n+1NiDifi=1n+1ifin+1i1i=pmTrspDnn+1iDifi=1nifini1i
83 82 fveq2d NnnNSiDifi=1nifini1i=1n+1n+1NSiDifi=1n+1ifin+1i1i=SpmTrspDnn+1iDifi=1nifini1i
84 58 a1i NnnNSiDifi=1nifini1i=1n+1n+1NDFin
85 eqid ranpmTrspD=ranpmTrspD
86 85 3 4 symgtrf ranpmTrspDB
87 eqid pmTrspD=pmTrspD
88 1 87 pmtrto1cl nn+1DpmTrspDnn+1ranpmTrspD
89 72 79 88 syl2anc Nnn+1NpmTrspDnn+1ranpmTrspD
90 89 adantlr NnnNSiDifi=1nifini1i=1n+1n+1NpmTrspDnn+1ranpmTrspD
91 86 90 sselid NnnNSiDifi=1nifini1i=1n+1n+1NpmTrspDnn+1B
92 72 nnred Nnn+1Nn
93 1red Nnn+1N1
94 92 93 readdcld Nnn+1Nn+1
95 74 nnred Nnn+1NN
96 92 lep1d Nnn+1Nnn+1
97 92 94 95 96 75 letrd Nnn+1NnN
98 72 74 97 3jca Nnn+1NnNnN
99 elfz1b n1NnNnN
100 98 99 sylibr Nnn+1Nn1N
101 100 1 eleqtrrdi Nnn+1NnD
102 101 adantlr NnnNSiDifi=1nifini1i=1n+1n+1NnD
103 eqid iDifi=1nifini1i=iDifi=1nifini1i
104 1 103 3 4 fzto1st nDiDifi=1nifini1iB
105 102 104 syl NnnNSiDifi=1nifini1i=1n+1n+1NiDifi=1nifini1iB
106 3 5 4 psgnco DFinpmTrspDnn+1BiDifi=1nifini1iBSpmTrspDnn+1iDifi=1nifini1i=SpmTrspDnn+1SiDifi=1nifini1i
107 84 91 105 106 syl3anc NnnNSiDifi=1nifini1i=1n+1n+1NSpmTrspDnn+1iDifi=1nifini1i=SpmTrspDnn+1SiDifi=1nifini1i
108 3 85 5 psgnpmtr pmTrspDnn+1ranpmTrspDSpmTrspDnn+1=1
109 89 108 syl Nnn+1NSpmTrspDnn+1=1
110 109 adantlr NnnNSiDifi=1nifini1i=1n+1n+1NSpmTrspDnn+1=1
111 97 adantlr NnnNSiDifi=1nifini1i=1n+1n+1NnN
112 simplr NnnNSiDifi=1nifini1i=1n+1n+1NnNSiDifi=1nifini1i=1n+1
113 111 112 mpd NnnNSiDifi=1nifini1i=1n+1n+1NSiDifi=1nifini1i=1n+1
114 110 113 oveq12d NnnNSiDifi=1nifini1i=1n+1n+1NSpmTrspDnn+1SiDifi=1nifini1i=-11n+1
115 neg1cn 1
116 peano2nn nn+1
117 116 nnnn0d nn+10
118 expp1 1n+101n+1+1=1n+1-1
119 115 117 118 sylancr n1n+1+1=1n+1-1
120 115 a1i n1
121 120 117 expcld n1n+1
122 121 120 mulcomd n1n+1-1=-11n+1
123 119 122 eqtr2d n-11n+1=1n+1+1
124 123 ad3antlr NnnNSiDifi=1nifini1i=1n+1n+1N-11n+1=1n+1+1
125 114 124 eqtrd NnnNSiDifi=1nifini1i=1n+1n+1NSpmTrspDnn+1SiDifi=1nifini1i=1n+1+1
126 83 107 125 3eqtrd NnnNSiDifi=1nifini1i=1n+1n+1NSiDifi=1n+1ifin+1i1i=1n+1+1
127 126 ex NnnNSiDifi=1nifini1i=1n+1n+1NSiDifi=1n+1ifin+1i1i=1n+1+1
128 22 33 44 56 71 127 nnindd NIINSP=1I+1
129 128 imp NIINSP=1I+1
130 11 129 sylbi NIINSP=1I+1
131 10 130 syl IDSP=1I+1