Metamath Proof Explorer


Theorem psrbaglefi

Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 25-Jan-2015) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbaglefi FDyD|yfFFin

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 df-rab yD|yfF=y|yDyfF
3 1 psrbagf yDy:I0
4 3 a1i FDyDy:I0
5 4 adantrd FDyDyfFy:I0
6 ss2ixp xI0Fx0xI0FxxI0
7 fz0ssnn0 0Fx0
8 7 a1i xI0Fx0
9 6 8 mprg xI0FxxI0
10 9 sseli yxI0FxyxI0
11 vex yV
12 11 elixpconst yxI0y:I0
13 10 12 sylib yxI0Fxy:I0
14 13 a1i FDyxI0Fxy:I0
15 ffn y:I0yFnI
16 15 adantl FDy:I0yFnI
17 11 elixp yxI0FxyFnIxIyx0Fx
18 17 baib yFnIyxI0FxxIyx0Fx
19 16 18 syl FDy:I0yxI0FxxIyx0Fx
20 ffvelcdm y:I0xIyx0
21 20 adantll FDy:I0xIyx0
22 nn0uz 0=0
23 21 22 eleqtrdi FDy:I0xIyx0
24 1 psrbagf FDF:I0
25 24 adantr FDy:I0F:I0
26 25 ffvelcdmda FDy:I0xIFx0
27 26 nn0zd FDy:I0xIFx
28 elfz5 yx0Fxyx0FxyxFx
29 23 27 28 syl2anc FDy:I0xIyx0FxyxFx
30 29 ralbidva FDy:I0xIyx0FxxIyxFx
31 24 ffnd FDFFnI
32 31 adantr FDy:I0FFnI
33 11 a1i FDy:I0yV
34 simpl FDy:I0FD
35 inidm II=I
36 eqidd FDy:I0xIyx=yx
37 eqidd FDy:I0xIFx=Fx
38 16 32 33 34 35 36 37 ofrfvalg FDy:I0yfFxIyxFx
39 30 38 bitr4d FDy:I0xIyx0FxyfF
40 1 psrbaglecl FDy:I0yfFyD
41 40 3expia FDy:I0yfFyD
42 41 pm4.71rd FDy:I0yfFyDyfF
43 19 39 42 3bitrrd FDy:I0yDyfFyxI0Fx
44 43 ex FDy:I0yDyfFyxI0Fx
45 5 14 44 pm5.21ndd FDyDyfFyxI0Fx
46 45 eqabcdv FDy|yDyfF=xI0Fx
47 2 46 eqtrid FDyD|yfF=xI0Fx
48 cnveq f=Ff-1=F-1
49 48 imaeq1d f=Ff-1=F-1
50 49 eleq1d f=Ff-1FinF-1Fin
51 50 1 elrab2 FDF0IF-1Fin
52 51 simprbi FDF-1Fin
53 fzfid FDxI0FxFin
54 fcdmnn0suppg FDF:I0Fsupp0=F-1
55 24 54 mpdan FDFsupp0=F-1
56 eqimss Fsupp0=F-1Fsupp0F-1
57 55 56 syl FDFsupp0F-1
58 id FDFD
59 c0ex 0V
60 59 a1i FD0V
61 24 57 58 60 suppssrg FDxIF-1Fx=0
62 61 oveq2d FDxIF-10Fx=00
63 fz0sn 00=0
64 62 63 eqtrdi FDxIF-10Fx=0
65 eqimss 0Fx=00Fx0
66 64 65 syl FDxIF-10Fx0
67 52 53 66 ixpfi2 FDxI0FxFin
68 47 67 eqeltrd FDyD|yfFFin