Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 25-Jan-2015) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | psrbag.d | |
|
Assertion | psrbaglefi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | |
|
2 | df-rab | |
|
3 | 1 | psrbagf | |
4 | 3 | a1i | |
5 | 4 | adantrd | |
6 | ss2ixp | |
|
7 | fz0ssnn0 | |
|
8 | 7 | a1i | |
9 | 6 8 | mprg | |
10 | 9 | sseli | |
11 | vex | |
|
12 | 11 | elixpconst | |
13 | 10 12 | sylib | |
14 | 13 | a1i | |
15 | ffn | |
|
16 | 15 | adantl | |
17 | 11 | elixp | |
18 | 17 | baib | |
19 | 16 18 | syl | |
20 | ffvelcdm | |
|
21 | 20 | adantll | |
22 | nn0uz | |
|
23 | 21 22 | eleqtrdi | |
24 | 1 | psrbagf | |
25 | 24 | adantr | |
26 | 25 | ffvelcdmda | |
27 | 26 | nn0zd | |
28 | elfz5 | |
|
29 | 23 27 28 | syl2anc | |
30 | 29 | ralbidva | |
31 | 24 | ffnd | |
32 | 31 | adantr | |
33 | 11 | a1i | |
34 | simpl | |
|
35 | inidm | |
|
36 | eqidd | |
|
37 | eqidd | |
|
38 | 16 32 33 34 35 36 37 | ofrfvalg | |
39 | 30 38 | bitr4d | |
40 | 1 | psrbaglecl | |
41 | 40 | 3expia | |
42 | 41 | pm4.71rd | |
43 | 19 39 42 | 3bitrrd | |
44 | 43 | ex | |
45 | 5 14 44 | pm5.21ndd | |
46 | 45 | eqabcdv | |
47 | 2 46 | eqtrid | |
48 | cnveq | |
|
49 | 48 | imaeq1d | |
50 | 49 | eleq1d | |
51 | 50 1 | elrab2 | |
52 | 51 | simprbi | |
53 | fzfid | |
|
54 | fcdmnn0suppg | |
|
55 | 24 54 | mpdan | |
56 | eqimss | |
|
57 | 55 56 | syl | |
58 | id | |
|
59 | c0ex | |
|
60 | 59 | a1i | |
61 | 24 57 58 60 | suppssrg | |
62 | 61 | oveq2d | |
63 | fz0sn | |
|
64 | 62 63 | eqtrdi | |
65 | eqimss | |
|
66 | 64 65 | syl | |
67 | 52 53 66 | ixpfi2 | |
68 | 47 67 | eqeltrd | |