Metamath Proof Explorer


Theorem ptcld

Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses ptcld.a φAV
ptcld.f φF:ATop
ptcld.c φkACClsdFk
Assertion ptcld φkACClsd𝑡F

Proof

Step Hyp Ref Expression
1 ptcld.a φAV
2 ptcld.f φF:ATop
3 ptcld.c φkACClsdFk
4 eqid Fk=Fk
5 4 cldss CClsdFkCFk
6 3 5 syl φkACFk
7 6 ralrimiva φkACFk
8 boxriin kACFkkAC=kAFkxAkAifk=xCFk
9 7 8 syl φkAC=kAFkxAkAifk=xCFk
10 eqid 𝑡F=𝑡F
11 10 ptuni AVF:ATopkAFk=𝑡F
12 1 2 11 syl2anc φkAFk=𝑡F
13 12 ineq1d φkAFkxAkAifk=xCFk=𝑡FxAkAifk=xCFk
14 pttop AVF:ATop𝑡FTop
15 1 2 14 syl2anc φ𝑡FTop
16 sseq1 C=ifk=xCFkCFkifk=xCFkFk
17 sseq1 Fk=ifk=xCFkFkFkifk=xCFkFk
18 simpl CFkk=xCFk
19 ssidd CFk¬k=xFkFk
20 16 17 18 19 ifbothda CFkifk=xCFkFk
21 20 ralimi kACFkkAifk=xCFkFk
22 ss2ixp kAifk=xCFkFkkAifk=xCFkkAFk
23 7 21 22 3syl φkAifk=xCFkkAFk
24 23 adantr φxAkAifk=xCFkkAFk
25 12 adantr φxAkAFk=𝑡F
26 24 25 sseqtrd φxAkAifk=xCFk𝑡F
27 12 eqcomd φ𝑡F=kAFk
28 27 difeq1d φ𝑡FkAifk=xCFk=kAFkkAifk=xCFk
29 28 adantr φxA𝑡FkAifk=xCFk=kAFkkAifk=xCFk
30 simpr φxAxA
31 7 adantr φxAkACFk
32 boxcutc xAkACFkkAFkkAifk=xCFk=kAifk=xFkCFk
33 30 31 32 syl2anc φxAkAFkkAifk=xCFk=kAifk=xFkCFk
34 ixpeq2 kAifk=xFkCFk=ifk=xFxx/kCFkkAifk=xFkCFk=kAifk=xFxx/kCFk
35 fveq2 k=xFk=Fx
36 35 unieqd k=xFk=Fx
37 csbeq1a k=xC=x/kC
38 36 37 difeq12d k=xFkC=Fxx/kC
39 38 adantl kAk=xFkC=Fxx/kC
40 39 ifeq1da kAifk=xFkCFk=ifk=xFxx/kCFk
41 34 40 mprg kAifk=xFkCFk=kAifk=xFxx/kCFk
42 41 a1i φxAkAifk=xFkCFk=kAifk=xFxx/kCFk
43 29 33 42 3eqtrd φxA𝑡FkAifk=xCFk=kAifk=xFxx/kCFk
44 1 adantr φxAAV
45 2 adantr φxAF:ATop
46 3 ralrimiva φkACClsdFk
47 nfv xCClsdFk
48 nfcsb1v _kx/kC
49 48 nfel1 kx/kCClsdFx
50 2fveq3 k=xClsdFk=ClsdFx
51 37 50 eleq12d k=xCClsdFkx/kCClsdFx
52 47 49 51 cbvralw kACClsdFkxAx/kCClsdFx
53 46 52 sylib φxAx/kCClsdFx
54 53 r19.21bi φxAx/kCClsdFx
55 eqid Fx=Fx
56 55 cldopn x/kCClsdFxFxx/kCFx
57 54 56 syl φxAFxx/kCFx
58 44 45 57 ptopn2 φxAkAifk=xFxx/kCFk𝑡F
59 43 58 eqeltrd φxA𝑡FkAifk=xCFk𝑡F
60 eqid 𝑡F=𝑡F
61 60 iscld 𝑡FTopkAifk=xCFkClsd𝑡FkAifk=xCFk𝑡F𝑡FkAifk=xCFk𝑡F
62 15 61 syl φkAifk=xCFkClsd𝑡FkAifk=xCFk𝑡F𝑡FkAifk=xCFk𝑡F
63 62 adantr φxAkAifk=xCFkClsd𝑡FkAifk=xCFk𝑡F𝑡FkAifk=xCFk𝑡F
64 26 59 63 mpbir2and φxAkAifk=xCFkClsd𝑡F
65 64 ralrimiva φxAkAifk=xCFkClsd𝑡F
66 60 riincld 𝑡FTopxAkAifk=xCFkClsd𝑡F𝑡FxAkAifk=xCFkClsd𝑡F
67 15 65 66 syl2anc φ𝑡FxAkAifk=xCFkClsd𝑡F
68 13 67 eqeltrd φkAFkxAkAifk=xCFkClsd𝑡F
69 9 68 eqeltrd φkACClsd𝑡F