Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ptcld.a | |
|
ptcld.f | |
||
ptcld.c | |
||
Assertion | ptcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcld.a | |
|
2 | ptcld.f | |
|
3 | ptcld.c | |
|
4 | eqid | |
|
5 | 4 | cldss | |
6 | 3 5 | syl | |
7 | 6 | ralrimiva | |
8 | boxriin | |
|
9 | 7 8 | syl | |
10 | eqid | |
|
11 | 10 | ptuni | |
12 | 1 2 11 | syl2anc | |
13 | 12 | ineq1d | |
14 | pttop | |
|
15 | 1 2 14 | syl2anc | |
16 | sseq1 | |
|
17 | sseq1 | |
|
18 | simpl | |
|
19 | ssidd | |
|
20 | 16 17 18 19 | ifbothda | |
21 | 20 | ralimi | |
22 | ss2ixp | |
|
23 | 7 21 22 | 3syl | |
24 | 23 | adantr | |
25 | 12 | adantr | |
26 | 24 25 | sseqtrd | |
27 | 12 | eqcomd | |
28 | 27 | difeq1d | |
29 | 28 | adantr | |
30 | simpr | |
|
31 | 7 | adantr | |
32 | boxcutc | |
|
33 | 30 31 32 | syl2anc | |
34 | ixpeq2 | |
|
35 | fveq2 | |
|
36 | 35 | unieqd | |
37 | csbeq1a | |
|
38 | 36 37 | difeq12d | |
39 | 38 | adantl | |
40 | 39 | ifeq1da | |
41 | 34 40 | mprg | |
42 | 41 | a1i | |
43 | 29 33 42 | 3eqtrd | |
44 | 1 | adantr | |
45 | 2 | adantr | |
46 | 3 | ralrimiva | |
47 | nfv | |
|
48 | nfcsb1v | |
|
49 | 48 | nfel1 | |
50 | 2fveq3 | |
|
51 | 37 50 | eleq12d | |
52 | 47 49 51 | cbvralw | |
53 | 46 52 | sylib | |
54 | 53 | r19.21bi | |
55 | eqid | |
|
56 | 55 | cldopn | |
57 | 54 56 | syl | |
58 | 44 45 57 | ptopn2 | |
59 | 43 58 | eqeltrd | |
60 | eqid | |
|
61 | 60 | iscld | |
62 | 15 61 | syl | |
63 | 62 | adantr | |
64 | 26 59 63 | mpbir2and | |
65 | 64 | ralrimiva | |
66 | 60 | riincld | |
67 | 15 65 66 | syl2anc | |
68 | 13 67 | eqeltrd | |
69 | 9 68 | eqeltrd | |