Metamath Proof Explorer


Theorem pzriprnglem10

Description: Lemma 10 for pzriprng : The equivalence classes of R modulo J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
pzriprng.1 1˙=1J
pzriprng.g ˙=R~QGI
Assertion pzriprnglem10 XYXY˙=×Y

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 pzriprng.1 1˙=1J
5 pzriprng.g ˙=R~QGI
6 1 pzriprnglem1 RRng
7 rnggrp RRngRGrp
8 6 7 ax-mp RGrp
9 0z 0
10 snssi 00
11 xpss2 0×0×
12 9 10 11 mp2b ×0×
13 2 12 eqsstri I×
14 13 a1i XYI×
15 opelxpi XYXY×
16 1 pzriprnglem2 BaseR=×
17 16 eqcomi ×=BaseR
18 eqid +R=+R
19 17 5 18 eqglact RGrpI×XY×XY˙=x×XY+RxI
20 8 14 15 19 mp3an2i XYXY˙=x×XY+RxI
21 14 mptimass XYx×XY+RxI=ranxIXY+Rx
22 eqid xIXY+Rx=xIXY+Rx
23 22 rnmpt ranxIXY+Rx=e|xIe=XY+Rx
24 23 a1i XYranxIXY+Rx=e|xIe=XY+Rx
25 2 rexeqi xIe=XY+Rxx×0e=XY+Rx
26 oveq2 x=abXY+Rx=XY+Rab
27 26 eqeq2d x=abe=XY+Rxe=XY+Rab
28 27 rexxp x×0e=XY+Rxab0e=XY+Rab
29 25 28 bitri xIe=XY+Rxab0e=XY+Rab
30 29 a1i XYxIe=XY+Rxab0e=XY+Rab
31 30 abbidv XYe|xIe=XY+Rx=e|ab0e=XY+Rab
32 c0ex 0V
33 opeq2 b=0ab=a0
34 33 oveq2d b=0XY+Rab=XY+Ra0
35 34 eqeq2d b=0e=XY+Rabe=XY+Ra0
36 32 35 rexsn b0e=XY+Rabe=XY+Ra0
37 zringbas =Basering
38 zringring ringRing
39 38 a1i XYaringRing
40 simpll XYaX
41 simplr XYaY
42 simpr XYaa
43 0zd XYa0
44 40 42 zaddcld XYaX+a
45 simpr XYY
46 0zd XY0
47 45 46 zaddcld XYY+0
48 47 adantr XYaY+0
49 zringplusg +=+ring
50 1 37 37 39 39 40 41 42 43 44 48 49 49 18 xpsadd XYaXY+Ra0=X+aY+0
51 50 eqeq2d XYae=XY+Ra0e=X+aY+0
52 36 51 bitrid XYab0e=XY+Rabe=X+aY+0
53 52 rexbidva XYab0e=XY+Rabae=X+aY+0
54 53 abbidv XYe|ab0e=XY+Rab=e|ae=X+aY+0
55 iunab ae|e=X+aY+0=e|ae=X+aY+0
56 55 eqcomi e|ae=X+aY+0=ae|e=X+aY+0
57 56 a1i XYe|ae=X+aY+0=ae|e=X+aY+0
58 zcn YY
59 58 adantl XYY
60 59 addridd XYY+0=Y
61 60 opeq2d XYX+aY+0=X+aY
62 61 eqeq2d XYe=X+aY+0e=X+aY
63 62 abbidv XYe|e=X+aY+0=e|e=X+aY
64 63 iuneq2d XYae|e=X+aY+0=ae|e=X+aY
65 df-sn X+aY=e|e=X+aY
66 65 eqcomi e|e=X+aY=X+aY
67 66 a1i ae|e=X+aY=X+aY
68 67 iuneq2i ae|e=X+aY=aX+aY
69 68 a1i XYae|e=X+aY=aX+aY
70 velsn yX+aYy=X+aY
71 70 rexbii ayX+aYay=X+aY
72 44 adantr XYay=X+aYX+a
73 simplr XYay=X+aYb=X+ay=X+aY
74 opeq1 b=X+abY=X+aY
75 74 adantl XYay=X+aYb=X+abY=X+aY
76 73 75 eqeq12d XYay=X+aYb=X+ay=bYX+aY=X+aY
77 eqidd XYay=X+aYX+aY=X+aY
78 72 76 77 rspcedvd XYay=X+aYby=bY
79 78 ex XYay=X+aYby=bY
80 79 rexlimdva XYay=X+aYby=bY
81 simpr XYbb
82 simpll XYbX
83 81 82 zsubcld XYbbX
84 83 adantr XYby=bYbX
85 simplr XYby=bYa=bXy=bY
86 oveq2 a=bXX+a=X+b-X
87 86 adantl XYby=bYa=bXX+a=X+b-X
88 87 opeq1d XYby=bYa=bXX+aY=X+b-XY
89 85 88 eqeq12d XYby=bYa=bXy=X+aYbY=X+b-XY
90 zcn XX
91 90 adantr XYX
92 91 adantr XYbX
93 zcn bb
94 93 adantl XYbb
95 92 94 pncan3d XYbX+b-X=b
96 95 eqcomd XYbb=X+b-X
97 96 adantr XYby=bYb=X+b-X
98 97 opeq1d XYby=bYbY=X+b-XY
99 84 89 98 rspcedvd XYby=bYay=X+aY
100 99 ex XYby=bYay=X+aY
101 100 rexlimdva XYby=bYay=X+aY
102 80 101 impbid XYay=X+aYby=bY
103 71 102 bitrid XYayX+aYby=bY
104 opeq2 c=Ybc=bY
105 104 eqeq2d c=Yy=bcy=bY
106 105 rexsng YcYy=bcy=bY
107 106 adantl XYcYy=bcy=bY
108 107 bicomd XYy=bYcYy=bc
109 108 rexbidv XYby=bYbcYy=bc
110 103 109 bitrd XYayX+aYbcYy=bc
111 eliun yaX+aYayX+aY
112 elxp2 y×YbcYy=bc
113 110 111 112 3bitr4g XYyaX+aYy×Y
114 113 eqrdv XYaX+aY=×Y
115 64 69 114 3eqtrd XYae|e=X+aY+0=×Y
116 54 57 115 3eqtrd XYe|ab0e=XY+Rab=×Y
117 24 31 116 3eqtrd XYranxIXY+Rx=×Y
118 20 21 117 3eqtrd XYXY˙=×Y