Metamath Proof Explorer


Theorem quslsm

Description: Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses quslsm.b B = Base G
quslsm.p ˙ = LSSum G
quslsm.n φ S SubGrp G
quslsm.s φ X B
Assertion quslsm φ X G ~ QG S = X ˙ S

Proof

Step Hyp Ref Expression
1 quslsm.b B = Base G
2 quslsm.p ˙ = LSSum G
3 quslsm.n φ S SubGrp G
4 quslsm.s φ X B
5 subgrcl S SubGrp G G Grp
6 3 5 syl φ G Grp
7 1 subgss S SubGrp G S B
8 3 7 syl φ S B
9 eqid inv g G = inv g G
10 eqid + G = + G
11 eqid G ~ QG S = G ~ QG S
12 1 9 10 11 eqgfval G Grp S B G ~ QG S = i j | i j B inv g G i + G j S
13 6 8 12 syl2anc φ G ~ QG S = i j | i j B inv g G i + G j S
14 simpr φ i j B inv g G i + G j S inv g G i + G j S
15 oveq2 k = inv g G i + G j i + G k = i + G inv g G i + G j
16 15 eqeq1d k = inv g G i + G j i + G k = j i + G inv g G i + G j = j
17 16 adantl φ i j B inv g G i + G j S k = inv g G i + G j i + G k = j i + G inv g G i + G j = j
18 6 adantr φ i j B G Grp
19 vex i V
20 vex j V
21 19 20 prss i B j B i j B
22 21 bicomi i j B i B j B
23 22 simplbi i j B i B
24 23 adantl φ i j B i B
25 eqid 0 G = 0 G
26 1 10 25 9 grprinv G Grp i B i + G inv g G i = 0 G
27 18 24 26 syl2anc φ i j B i + G inv g G i = 0 G
28 27 oveq1d φ i j B i + G inv g G i + G j = 0 G + G j
29 1 9 grpinvcl G Grp i B inv g G i B
30 18 24 29 syl2anc φ i j B inv g G i B
31 22 simprbi i j B j B
32 31 adantl φ i j B j B
33 1 10 grpass G Grp i B inv g G i B j B i + G inv g G i + G j = i + G inv g G i + G j
34 18 24 30 32 33 syl13anc φ i j B i + G inv g G i + G j = i + G inv g G i + G j
35 1 10 25 grplid G Grp j B 0 G + G j = j
36 18 32 35 syl2anc φ i j B 0 G + G j = j
37 28 34 36 3eqtr3d φ i j B i + G inv g G i + G j = j
38 37 adantr φ i j B inv g G i + G j S i + G inv g G i + G j = j
39 14 17 38 rspcedvd φ i j B inv g G i + G j S k S i + G k = j
40 oveq2 i + G k = j inv g G i + G i + G k = inv g G i + G j
41 40 adantl φ i j B k S i + G k = j inv g G i + G i + G k = inv g G i + G j
42 simpll φ i j B k S φ
43 24 adantr φ i j B k S i B
44 8 adantr φ i j B S B
45 44 sselda φ i j B k S k B
46 6 3ad2ant1 φ i B k B G Grp
47 simp2 φ i B k B i B
48 1 10 25 9 grplinv G Grp i B inv g G i + G i = 0 G
49 46 47 48 syl2anc φ i B k B inv g G i + G i = 0 G
50 49 oveq1d φ i B k B inv g G i + G i + G k = 0 G + G k
51 46 47 29 syl2anc φ i B k B inv g G i B
52 simp3 φ i B k B k B
53 1 10 grpass G Grp inv g G i B i B k B inv g G i + G i + G k = inv g G i + G i + G k
54 46 51 47 52 53 syl13anc φ i B k B inv g G i + G i + G k = inv g G i + G i + G k
55 1 10 25 grplid G Grp k B 0 G + G k = k
56 46 52 55 syl2anc φ i B k B 0 G + G k = k
57 50 54 56 3eqtr3d φ i B k B inv g G i + G i + G k = k
58 42 43 45 57 syl3anc φ i j B k S inv g G i + G i + G k = k
59 58 adantr φ i j B k S i + G k = j inv g G i + G i + G k = k
60 41 59 eqtr3d φ i j B k S i + G k = j inv g G i + G j = k
61 simplr φ i j B k S i + G k = j k S
62 60 61 eqeltrd φ i j B k S i + G k = j inv g G i + G j S
63 62 r19.29an φ i j B k S i + G k = j inv g G i + G j S
64 39 63 impbida φ i j B inv g G i + G j S k S i + G k = j
65 64 pm5.32da φ i j B inv g G i + G j S i j B k S i + G k = j
66 65 opabbidv φ i j | i j B inv g G i + G j S = i j | i j B k S i + G k = j
67 13 66 eqtrd φ G ~ QG S = i j | i j B k S i + G k = j
68 67 eceq2d φ X G ~ QG S = X i j | i j B k S i + G k = j
69 eqid i j | i j B k S i + G k = j = i j | i j B k S i + G k = j
70 6 grpmndd φ G Mnd
71 1 10 2 69 70 8 4 lsmsnorb2 φ X ˙ S = X i j | i j B k S i + G k = j
72 68 71 eqtr4d φ X G ~ QG S = X ˙ S