| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd |  | 
						
							| 2 |  | simprr |  | 
						
							| 3 |  | dmeq |  | 
						
							| 4 |  | rneq |  | 
						
							| 5 | 3 4 | uneq12d |  | 
						
							| 6 | 5 | reseq2d |  | 
						
							| 7 |  | eqidd |  | 
						
							| 8 |  | coeq2 |  | 
						
							| 9 | 8 | mpoeq3dv |  | 
						
							| 10 |  | id |  | 
						
							| 11 | 10 | mpteq2dv |  | 
						
							| 12 | 7 9 11 | seqeq123d |  | 
						
							| 13 | 12 | fveq1d |  | 
						
							| 14 | 6 13 | ifeq12d |  | 
						
							| 15 | 14 | ad2antrl |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 |  | eqeq1 |  | 
						
							| 18 | 17 | anbi2d |  | 
						
							| 19 | 18 | anbi2d |  | 
						
							| 20 |  | eqeq1 |  | 
						
							| 21 |  | fveq2 |  | 
						
							| 22 | 20 21 | ifbieq2d |  | 
						
							| 23 | 22 | eqeq1d |  | 
						
							| 24 | 16 19 23 | 3imtr4d |  | 
						
							| 25 | 2 24 | mpcom |  | 
						
							| 26 |  | elex |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | simpr |  | 
						
							| 29 | 28 | peano2nnd |  | 
						
							| 30 | 29 | nnnn0d |  | 
						
							| 31 |  | dmexg |  | 
						
							| 32 |  | rnexg |  | 
						
							| 33 |  | unexg |  | 
						
							| 34 | 31 32 33 | syl2anc |  | 
						
							| 35 |  | resiexg |  | 
						
							| 36 | 34 35 | syl |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 |  | fvexd |  | 
						
							| 39 | 37 38 | ifcld |  | 
						
							| 40 | 1 25 27 30 39 | ovmpod |  | 
						
							| 41 |  | nnne0 |  | 
						
							| 42 | 41 | neneqd |  | 
						
							| 43 | 29 42 | syl |  | 
						
							| 44 | 43 | iffalsed |  | 
						
							| 45 |  | elnnuz |  | 
						
							| 46 | 45 | biimpi |  | 
						
							| 47 | 46 | adantl |  | 
						
							| 48 |  | seqp1 |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 |  | ovex |  | 
						
							| 51 |  | simpl |  | 
						
							| 52 |  | eqidd |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 52 53 | fvmptg |  | 
						
							| 55 | 50 51 54 | sylancr |  | 
						
							| 56 | 55 | oveq2d |  | 
						
							| 57 |  | nfcv |  | 
						
							| 58 |  | nfcv |  | 
						
							| 59 |  | nfcv |  | 
						
							| 60 |  | nfcv |  | 
						
							| 61 |  | simpl |  | 
						
							| 62 | 61 | coeq1d |  | 
						
							| 63 | 57 58 59 60 62 | cbvmpo |  | 
						
							| 64 |  | oveq |  | 
						
							| 65 | 63 64 | mp1i |  | 
						
							| 66 |  | eqidd |  | 
						
							| 67 |  | simprl |  | 
						
							| 68 | 67 | coeq1d |  | 
						
							| 69 |  | fvexd |  | 
						
							| 70 |  | fvex |  | 
						
							| 71 |  | coexg |  | 
						
							| 72 | 70 51 71 | sylancr |  | 
						
							| 73 | 66 68 69 27 72 | ovmpod |  | 
						
							| 74 |  | simpr |  | 
						
							| 75 | 74 | eqeq1d |  | 
						
							| 76 | 6 | adantr |  | 
						
							| 77 | 12 | adantr |  | 
						
							| 78 | 77 74 | fveq12d |  | 
						
							| 79 | 75 76 78 | ifbieq12d |  | 
						
							| 80 | 79 | adantl |  | 
						
							| 81 | 28 | nnnn0d |  | 
						
							| 82 | 37 69 | ifcld |  | 
						
							| 83 | 1 80 27 81 82 | ovmpod |  | 
						
							| 84 |  | nnne0 |  | 
						
							| 85 | 84 | adantl |  | 
						
							| 86 | 85 | neneqd |  | 
						
							| 87 | 86 | iffalsed |  | 
						
							| 88 | 83 87 | eqtr2d |  | 
						
							| 89 | 88 | coeq1d |  | 
						
							| 90 | 65 73 89 | 3eqtrd |  | 
						
							| 91 | 49 56 90 | 3eqtrd |  | 
						
							| 92 | 40 44 91 | 3eqtrd |  | 
						
							| 93 |  | df-relexp |  | 
						
							| 94 |  | oveq |  | 
						
							| 95 |  | oveq |  | 
						
							| 96 | 95 | coeq1d |  | 
						
							| 97 | 94 96 | eqeq12d |  | 
						
							| 98 | 97 | imbi2d |  | 
						
							| 99 | 93 98 | ax-mp |  | 
						
							| 100 | 92 99 | mpbir |  |