Metamath Proof Explorer


Theorem relexpsucnnr

Description: A reduction for relation exponentiation to the right. (Contributed by RP, 22-May-2020)

Ref Expression
Assertion relexpsucnnr R V N R r N + 1 = R r N R

Proof

Step Hyp Ref Expression
1 eqidd R V N r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n
2 simprr R V N r = R n = N + 1 n = N + 1
3 dmeq r = R dom r = dom R
4 rneq r = R ran r = ran R
5 3 4 uneq12d r = R dom r ran r = dom R ran R
6 5 reseq2d r = R I dom r ran r = I dom R ran R
7 eqidd r = R 1 = 1
8 coeq2 r = R x r = x R
9 8 mpoeq3dv r = R x V , y V x r = x V , y V x R
10 id r = R r = R
11 10 mpteq2dv r = R z V r = z V R
12 7 9 11 seqeq123d r = R seq 1 x V , y V x r z V r = seq 1 x V , y V x R z V R
13 12 fveq1d r = R seq 1 x V , y V x r z V r N + 1 = seq 1 x V , y V x R z V R N + 1
14 6 13 ifeq12d r = R if N + 1 = 0 I dom r ran r seq 1 x V , y V x r z V r N + 1 = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
15 14 ad2antrl R V N r = R N + 1 = N + 1 if N + 1 = 0 I dom r ran r seq 1 x V , y V x r z V r N + 1 = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
16 15 a1i n = N + 1 R V N r = R N + 1 = N + 1 if N + 1 = 0 I dom r ran r seq 1 x V , y V x r z V r N + 1 = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
17 eqeq1 n = N + 1 n = N + 1 N + 1 = N + 1
18 17 anbi2d n = N + 1 r = R n = N + 1 r = R N + 1 = N + 1
19 18 anbi2d n = N + 1 R V N r = R n = N + 1 R V N r = R N + 1 = N + 1
20 eqeq1 n = N + 1 n = 0 N + 1 = 0
21 fveq2 n = N + 1 seq 1 x V , y V x r z V r n = seq 1 x V , y V x r z V r N + 1
22 20 21 ifbieq2d n = N + 1 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = if N + 1 = 0 I dom r ran r seq 1 x V , y V x r z V r N + 1
23 22 eqeq1d n = N + 1 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1 if N + 1 = 0 I dom r ran r seq 1 x V , y V x r z V r N + 1 = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
24 16 19 23 3imtr4d n = N + 1 R V N r = R n = N + 1 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
25 2 24 mpcom R V N r = R n = N + 1 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
26 elex R V R V
27 26 adantr R V N R V
28 simpr R V N N
29 28 peano2nnd R V N N + 1
30 29 nnnn0d R V N N + 1 0
31 dmexg R V dom R V
32 rnexg R V ran R V
33 unexg dom R V ran R V dom R ran R V
34 31 32 33 syl2anc R V dom R ran R V
35 resiexg dom R ran R V I dom R ran R V
36 34 35 syl R V I dom R ran R V
37 36 adantr R V N I dom R ran R V
38 fvexd R V N seq 1 x V , y V x R z V R N + 1 V
39 37 38 ifcld R V N if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1 V
40 1 25 27 30 39 ovmpod R V N R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N + 1 = if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1
41 nnne0 N + 1 N + 1 0
42 41 neneqd N + 1 ¬ N + 1 = 0
43 29 42 syl R V N ¬ N + 1 = 0
44 43 iffalsed R V N if N + 1 = 0 I dom R ran R seq 1 x V , y V x R z V R N + 1 = seq 1 x V , y V x R z V R N + 1
45 elnnuz N N 1
46 45 biimpi N N 1
47 46 adantl R V N N 1
48 seqp1 N 1 seq 1 x V , y V x R z V R N + 1 = seq 1 x V , y V x R z V R N x V , y V x R z V R N + 1
49 47 48 syl R V N seq 1 x V , y V x R z V R N + 1 = seq 1 x V , y V x R z V R N x V , y V x R z V R N + 1
50 ovex N + 1 V
51 simpl R V N R V
52 eqidd z = N + 1 R = R
53 eqid z V R = z V R
54 52 53 fvmptg N + 1 V R V z V R N + 1 = R
55 50 51 54 sylancr R V N z V R N + 1 = R
56 55 oveq2d R V N seq 1 x V , y V x R z V R N x V , y V x R z V R N + 1 = seq 1 x V , y V x R z V R N x V , y V x R R
57 nfcv _ a x R
58 nfcv _ b x R
59 nfcv _ x a R
60 nfcv _ y a R
61 simpl x = a y = b x = a
62 61 coeq1d x = a y = b x R = a R
63 57 58 59 60 62 cbvmpo x V , y V x R = a V , b V a R
64 oveq x V , y V x R = a V , b V a R seq 1 x V , y V x R z V R N x V , y V x R R = seq 1 x V , y V x R z V R N a V , b V a R R
65 63 64 mp1i R V N seq 1 x V , y V x R z V R N x V , y V x R R = seq 1 x V , y V x R z V R N a V , b V a R R
66 eqidd R V N a V , b V a R = a V , b V a R
67 simprl R V N a = seq 1 x V , y V x R z V R N b = R a = seq 1 x V , y V x R z V R N
68 67 coeq1d R V N a = seq 1 x V , y V x R z V R N b = R a R = seq 1 x V , y V x R z V R N R
69 fvexd R V N seq 1 x V , y V x R z V R N V
70 fvex seq 1 x V , y V x R z V R N V
71 coexg seq 1 x V , y V x R z V R N V R V seq 1 x V , y V x R z V R N R V
72 70 51 71 sylancr R V N seq 1 x V , y V x R z V R N R V
73 66 68 69 27 72 ovmpod R V N seq 1 x V , y V x R z V R N a V , b V a R R = seq 1 x V , y V x R z V R N R
74 simpr r = R n = N n = N
75 74 eqeq1d r = R n = N n = 0 N = 0
76 6 adantr r = R n = N I dom r ran r = I dom R ran R
77 12 adantr r = R n = N seq 1 x V , y V x r z V r = seq 1 x V , y V x R z V R
78 77 74 fveq12d r = R n = N seq 1 x V , y V x r z V r n = seq 1 x V , y V x R z V R N
79 75 76 78 ifbieq12d r = R n = N if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = if N = 0 I dom R ran R seq 1 x V , y V x R z V R N
80 79 adantl R V N r = R n = N if n = 0 I dom r ran r seq 1 x V , y V x r z V r n = if N = 0 I dom R ran R seq 1 x V , y V x R z V R N
81 28 nnnn0d R V N N 0
82 37 69 ifcld R V N if N = 0 I dom R ran R seq 1 x V , y V x R z V R N V
83 1 80 27 81 82 ovmpod R V N R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N = if N = 0 I dom R ran R seq 1 x V , y V x R z V R N
84 nnne0 N N 0
85 84 adantl R V N N 0
86 85 neneqd R V N ¬ N = 0
87 86 iffalsed R V N if N = 0 I dom R ran R seq 1 x V , y V x R z V R N = seq 1 x V , y V x R z V R N
88 83 87 eqtr2d R V N seq 1 x V , y V x R z V R N = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N
89 88 coeq1d R V N seq 1 x V , y V x R z V R N R = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
90 65 73 89 3eqtrd R V N seq 1 x V , y V x R z V R N x V , y V x R R = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
91 49 56 90 3eqtrd R V N seq 1 x V , y V x R z V R N + 1 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
92 40 44 91 3eqtrd R V N R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N + 1 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
93 df-relexp r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n
94 oveq r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R r N + 1 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N + 1
95 oveq r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R r N = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N
96 95 coeq1d r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R r N R = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
97 94 96 eqeq12d r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R r N + 1 = R r N R R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N + 1 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
98 97 imbi2d r = r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n R V N R r N + 1 = R r N R R V N R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N + 1 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
99 93 98 ax-mp R V N R r N + 1 = R r N R R V N R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N + 1 = R r V , n 0 if n = 0 I dom r ran r seq 1 x V , y V x r z V r n N R
100 92 99 mpbir R V N R r N + 1 = R r N R