| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reparpht.1 |
|
| 2 |
|
reparpht.2 |
|
| 3 |
|
reparpht.3 |
|
| 4 |
|
reparpht.4 |
|
| 5 |
|
reparphtiOLD.5 |
|
| 6 |
|
cnco |
|
| 7 |
2 1 6
|
syl2anc |
|
| 8 |
|
iitopon |
|
| 9 |
8
|
a1i |
|
| 10 |
|
eqid |
|
| 11 |
10
|
cnfldtop |
|
| 12 |
|
cnrest2r |
|
| 13 |
11 12
|
mp1i |
|
| 14 |
9 9
|
cnmpt2nd |
|
| 15 |
|
iirevcn |
|
| 16 |
15
|
a1i |
|
| 17 |
|
oveq2 |
|
| 18 |
9 9 14 9 16 17
|
cnmpt21 |
|
| 19 |
10
|
dfii3 |
|
| 20 |
19
|
oveq2i |
|
| 21 |
18 20
|
eleqtrdi |
|
| 22 |
13 21
|
sseldd |
|
| 23 |
9 9
|
cnmpt1st |
|
| 24 |
9 9 23 2
|
cnmpt21f |
|
| 25 |
24 20
|
eleqtrdi |
|
| 26 |
13 25
|
sseldd |
|
| 27 |
10
|
mulcn |
|
| 28 |
27
|
a1i |
|
| 29 |
9 9 22 26 28
|
cnmpt22f |
|
| 30 |
14 20
|
eleqtrdi |
|
| 31 |
13 30
|
sseldd |
|
| 32 |
23 20
|
eleqtrdi |
|
| 33 |
13 32
|
sseldd |
|
| 34 |
9 9 31 33 28
|
cnmpt22f |
|
| 35 |
10
|
addcn |
|
| 36 |
35
|
a1i |
|
| 37 |
9 9 29 34 36
|
cnmpt22f |
|
| 38 |
10
|
cnfldtopon |
|
| 39 |
38
|
a1i |
|
| 40 |
|
iiuni |
|
| 41 |
40 40
|
cnf |
|
| 42 |
2 41
|
syl |
|
| 43 |
42
|
ffvelcdmda |
|
| 44 |
43
|
adantrr |
|
| 45 |
|
simprl |
|
| 46 |
|
simprr |
|
| 47 |
|
0re |
|
| 48 |
|
1re |
|
| 49 |
|
icccvx |
|
| 50 |
47 48 49
|
mp2an |
|
| 51 |
44 45 46 50
|
syl3anc |
|
| 52 |
51
|
ralrimivva |
|
| 53 |
|
eqid |
|
| 54 |
53
|
fmpo |
|
| 55 |
52 54
|
sylib |
|
| 56 |
55
|
frnd |
|
| 57 |
|
unitssre |
|
| 58 |
|
ax-resscn |
|
| 59 |
57 58
|
sstri |
|
| 60 |
59
|
a1i |
|
| 61 |
|
cnrest2 |
|
| 62 |
39 56 60 61
|
syl3anc |
|
| 63 |
37 62
|
mpbid |
|
| 64 |
63 20
|
eleqtrrdi |
|
| 65 |
9 9 64 1
|
cnmpt21f |
|
| 66 |
5 65
|
eqeltrid |
|
| 67 |
42
|
ffvelcdmda |
|
| 68 |
59 67
|
sselid |
|
| 69 |
68
|
mullidd |
|
| 70 |
59
|
sseli |
|
| 71 |
70
|
adantl |
|
| 72 |
71
|
mul02d |
|
| 73 |
69 72
|
oveq12d |
|
| 74 |
68
|
addridd |
|
| 75 |
73 74
|
eqtrd |
|
| 76 |
75
|
fveq2d |
|
| 77 |
|
simpr |
|
| 78 |
|
0elunit |
|
| 79 |
|
simpr |
|
| 80 |
79
|
oveq2d |
|
| 81 |
|
1m0e1 |
|
| 82 |
80 81
|
eqtrdi |
|
| 83 |
|
simpl |
|
| 84 |
83
|
fveq2d |
|
| 85 |
82 84
|
oveq12d |
|
| 86 |
79 83
|
oveq12d |
|
| 87 |
85 86
|
oveq12d |
|
| 88 |
87
|
fveq2d |
|
| 89 |
|
fvex |
|
| 90 |
88 5 89
|
ovmpoa |
|
| 91 |
77 78 90
|
sylancl |
|
| 92 |
|
fvco3 |
|
| 93 |
42 92
|
sylan |
|
| 94 |
76 91 93
|
3eqtr4d |
|
| 95 |
|
1elunit |
|
| 96 |
|
simpr |
|
| 97 |
96
|
oveq2d |
|
| 98 |
|
1m1e0 |
|
| 99 |
97 98
|
eqtrdi |
|
| 100 |
|
simpl |
|
| 101 |
100
|
fveq2d |
|
| 102 |
99 101
|
oveq12d |
|
| 103 |
96 100
|
oveq12d |
|
| 104 |
102 103
|
oveq12d |
|
| 105 |
104
|
fveq2d |
|
| 106 |
|
fvex |
|
| 107 |
105 5 106
|
ovmpoa |
|
| 108 |
77 95 107
|
sylancl |
|
| 109 |
68
|
mul02d |
|
| 110 |
71
|
mullidd |
|
| 111 |
109 110
|
oveq12d |
|
| 112 |
71
|
addlidd |
|
| 113 |
111 112
|
eqtrd |
|
| 114 |
113
|
fveq2d |
|
| 115 |
108 114
|
eqtrd |
|
| 116 |
3
|
adantr |
|
| 117 |
116
|
oveq2d |
|
| 118 |
|
ax-1cn |
|
| 119 |
|
subcl |
|
| 120 |
118 71 119
|
sylancr |
|
| 121 |
120
|
mul01d |
|
| 122 |
117 121
|
eqtrd |
|
| 123 |
71
|
mul01d |
|
| 124 |
122 123
|
oveq12d |
|
| 125 |
|
00id |
|
| 126 |
124 125
|
eqtrdi |
|
| 127 |
126
|
fveq2d |
|
| 128 |
|
simpr |
|
| 129 |
128
|
oveq2d |
|
| 130 |
|
simpl |
|
| 131 |
130
|
fveq2d |
|
| 132 |
129 131
|
oveq12d |
|
| 133 |
128 130
|
oveq12d |
|
| 134 |
132 133
|
oveq12d |
|
| 135 |
134
|
fveq2d |
|
| 136 |
|
fvex |
|
| 137 |
135 5 136
|
ovmpoa |
|
| 138 |
78 77 137
|
sylancr |
|
| 139 |
|
fvco3 |
|
| 140 |
42 78 139
|
sylancl |
|
| 141 |
3
|
fveq2d |
|
| 142 |
140 141
|
eqtrd |
|
| 143 |
142
|
adantr |
|
| 144 |
127 138 143
|
3eqtr4d |
|
| 145 |
4
|
adantr |
|
| 146 |
145
|
oveq2d |
|
| 147 |
120
|
mulridd |
|
| 148 |
146 147
|
eqtrd |
|
| 149 |
71
|
mulridd |
|
| 150 |
148 149
|
oveq12d |
|
| 151 |
|
npcan |
|
| 152 |
118 71 151
|
sylancr |
|
| 153 |
150 152
|
eqtrd |
|
| 154 |
153
|
fveq2d |
|
| 155 |
|
simpr |
|
| 156 |
155
|
oveq2d |
|
| 157 |
|
simpl |
|
| 158 |
157
|
fveq2d |
|
| 159 |
156 158
|
oveq12d |
|
| 160 |
155 157
|
oveq12d |
|
| 161 |
159 160
|
oveq12d |
|
| 162 |
161
|
fveq2d |
|
| 163 |
|
fvex |
|
| 164 |
162 5 163
|
ovmpoa |
|
| 165 |
95 77 164
|
sylancr |
|
| 166 |
|
fvco3 |
|
| 167 |
42 95 166
|
sylancl |
|
| 168 |
4
|
fveq2d |
|
| 169 |
167 168
|
eqtrd |
|
| 170 |
169
|
adantr |
|
| 171 |
154 165 170
|
3eqtr4d |
|
| 172 |
7 1 66 94 115 144 171
|
isphtpy2d |
|