Metamath Proof Explorer


Theorem reprinfz1

Description: For the representation of N , it is sufficient to consider nonnegative integers up to N . Remark of Nathanson p. 123 (Contributed by Thierry Arnoux, 13-Dec-2021)

Ref Expression
Hypotheses reprinfz1.n φN0
reprinfz1.s φS0
reprinfz1.a φA
Assertion reprinfz1 φAreprSN=A1NreprSN

Proof

Step Hyp Ref Expression
1 reprinfz1.n φN0
2 reprinfz1.s φS0
3 reprinfz1.a φA
4 nnex V
5 4 a1i φV
6 5 3 ssexd φAV
7 ovex 0..^SV
8 elmapg AV0..^SVcA0..^Sc:0..^SA
9 6 7 8 sylancl φcA0..^Sc:0..^SA
10 9 biimpa φcA0..^Sc:0..^SA
11 10 adantr φcA0..^Sa0..^Sca=Nc:0..^SA
12 elmapfn cA0..^ScFn0..^S
13 12 ad2antlr φcA0..^Sa0..^Sca=NcFn0..^S
14 simplr φcA0..^Sa0..^Sca=Nb0..^S¬cb1Na0..^Sca=N
15 1 nn0red φN
16 15 ad3antrrr φcA0..^Sb0..^S¬cb1NN
17 3 ad3antrrr φcA0..^Sb0..^S¬cb1NA
18 simpllr φcA0..^Sb0..^S¬cb1NcA0..^S
19 9 ad3antrrr φcA0..^Sb0..^S¬cb1NcA0..^Sc:0..^SA
20 18 19 mpbid φcA0..^Sb0..^S¬cb1Nc:0..^SA
21 simplr φcA0..^Sb0..^S¬cb1Nb0..^S
22 20 21 ffvelcdmd φcA0..^Sb0..^S¬cb1NcbA
23 17 22 sseldd φcA0..^Sb0..^S¬cb1Ncb
24 23 nnred φcA0..^Sb0..^S¬cb1Ncb
25 fzofi 0..^SFin
26 25 a1i φcA0..^Sb0..^S¬cb1N0..^SFin
27 3 ad4antr φcA0..^Sb0..^S¬cb1Na0..^SA
28 20 ffvelcdmda φcA0..^Sb0..^S¬cb1Na0..^ScaA
29 27 28 sseldd φcA0..^Sb0..^S¬cb1Na0..^Sca
30 29 nnred φcA0..^Sb0..^S¬cb1Na0..^Sca
31 26 30 fsumrecl φcA0..^Sb0..^S¬cb1Na0..^Sca
32 simpr φcA0..^Sb0..^S¬cb1N¬cb1N
33 1 nn0zd φN
34 33 ad3antrrr φcA0..^Sb0..^S¬cb1NN
35 fznn Ncb1NcbcbN
36 34 35 syl φcA0..^Sb0..^S¬cb1Ncb1NcbcbN
37 23 biantrurd φcA0..^Sb0..^S¬cb1NcbNcbcbN
38 36 37 bitr4d φcA0..^Sb0..^S¬cb1Ncb1NcbN
39 38 notbid φcA0..^Sb0..^S¬cb1N¬cb1N¬cbN
40 32 39 mpbid φcA0..^Sb0..^S¬cb1N¬cbN
41 16 24 ltnled φcA0..^Sb0..^S¬cb1NN<cb¬cbN
42 40 41 mpbird φcA0..^Sb0..^S¬cb1NN<cb
43 24 recnd φcA0..^Sb0..^S¬cb1Ncb
44 fveq2 a=bca=cb
45 44 sumsn b0..^Scbabca=cb
46 21 43 45 syl2anc φcA0..^Sb0..^S¬cb1Nabca=cb
47 29 nnnn0d φcA0..^Sb0..^S¬cb1Na0..^Sca0
48 nn0ge0 ca00ca
49 47 48 syl φcA0..^Sb0..^S¬cb1Na0..^S0ca
50 snssi b0..^Sb0..^S
51 50 ad2antlr φcA0..^Sb0..^S¬cb1Nb0..^S
52 26 30 49 51 fsumless φcA0..^Sb0..^S¬cb1Nabcaa0..^Sca
53 46 52 eqbrtrrd φcA0..^Sb0..^S¬cb1Ncba0..^Sca
54 16 24 31 42 53 ltletrd φcA0..^Sb0..^S¬cb1NN<a0..^Sca
55 16 54 ltned φcA0..^Sb0..^S¬cb1NNa0..^Sca
56 55 necomd φcA0..^Sb0..^S¬cb1Na0..^ScaN
57 56 r19.29an φcA0..^Sb0..^S¬cb1Na0..^ScaN
58 57 neneqd φcA0..^Sb0..^S¬cb1N¬a0..^Sca=N
59 58 adantlr φcA0..^Sa0..^Sca=Nb0..^S¬cb1N¬a0..^Sca=N
60 14 59 pm2.65da φcA0..^Sa0..^Sca=N¬b0..^S¬cb1N
61 dfral2 b0..^Scb1N¬b0..^S¬cb1N
62 60 61 sylibr φcA0..^Sa0..^Sca=Nb0..^Scb1N
63 44 eleq1d a=bca1Ncb1N
64 63 cbvralvw a0..^Sca1Nb0..^Scb1N
65 62 64 sylibr φcA0..^Sa0..^Sca=Na0..^Sca1N
66 13 65 jca φcA0..^Sa0..^Sca=NcFn0..^Sa0..^Sca1N
67 ffnfv c:0..^S1NcFn0..^Sa0..^Sca1N
68 66 67 sylibr φcA0..^Sa0..^Sca=Nc:0..^S1N
69 11 68 jca φcA0..^Sa0..^Sca=Nc:0..^SAc:0..^S1N
70 fin c:0..^SA1Nc:0..^SAc:0..^S1N
71 69 70 sylibr φcA0..^Sa0..^Sca=Nc:0..^SA1N
72 ovex 1NV
73 72 inex2 A1NV
74 73 7 elmap cA1N0..^Sc:0..^SA1N
75 71 74 sylibr φcA0..^Sa0..^Sca=NcA1N0..^S
76 75 anasss φcA0..^Sa0..^Sca=NcA1N0..^S
77 76 rabss3d φcA0..^S|a0..^Sca=NcA1N0..^S|a0..^Sca=N
78 3 33 2 reprval φAreprSN=cA0..^S|a0..^Sca=N
79 inss1 A1NA
80 79 a1i φA1NA
81 80 3 sstrd φA1N
82 81 33 2 reprval φA1NreprSN=cA1N0..^S|a0..^Sca=N
83 77 78 82 3sstr4d φAreprSNA1NreprSN
84 3 33 2 80 reprss φA1NreprSNAreprSN
85 83 84 eqssd φAreprSN=A1NreprSN