Metamath Proof Explorer


Theorem resssra

Description: The subring algebra of a restricted structure is the restriction of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses resssra.a A=BaseR
resssra.s S=R𝑠B
resssra.b φBA
resssra.c φCB
resssra.r φRV
Assertion resssra φsubringAlgSC=subringAlgRC𝑠B

Proof

Step Hyp Ref Expression
1 resssra.a A=BaseR
2 resssra.s S=R𝑠B
3 resssra.b φBA
4 resssra.c φCB
5 resssra.r φRV
6 eqidd φsubringAlgRC=subringAlgRC
7 4 3 sstrd φCA
8 7 1 sseqtrdi φCBaseR
9 6 8 srabase φBaseR=BasesubringAlgRC
10 1 9 eqtrid φA=BasesubringAlgRC
11 10 oveq2d φsubringAlgRC𝑠A=subringAlgRC𝑠BasesubringAlgRC
12 11 adantr φABsubringAlgRC𝑠A=subringAlgRC𝑠BasesubringAlgRC
13 simpr φABAB
14 3 adantr φABBA
15 13 14 eqssd φABA=B
16 15 oveq2d φABsubringAlgRC𝑠A=subringAlgRC𝑠B
17 fvex subringAlgRCV
18 eqid BasesubringAlgRC=BasesubringAlgRC
19 18 ressid subringAlgRCVsubringAlgRC𝑠BasesubringAlgRC=subringAlgRC
20 17 19 mp1i φABsubringAlgRC𝑠BasesubringAlgRC=subringAlgRC
21 12 16 20 3eqtr3d φABsubringAlgRC𝑠B=subringAlgRC
22 1 oveq2i R𝑠A=R𝑠BaseR
23 5 elexd φRV
24 eqid BaseR=BaseR
25 24 ressid RVR𝑠BaseR=R
26 23 25 syl φR𝑠BaseR=R
27 22 26 eqtrid φR𝑠A=R
28 27 adantr φABR𝑠A=R
29 15 oveq2d φABR𝑠A=R𝑠B
30 29 2 eqtr4di φABR𝑠A=S
31 28 30 eqtr3d φABR=S
32 31 fveq2d φABsubringAlgR=subringAlgS
33 32 fveq1d φABsubringAlgRC=subringAlgSC
34 21 33 eqtr2d φABsubringAlgSC=subringAlgRC𝑠B
35 simpr φ¬AB¬AB
36 23 adantr φ¬ABRV
37 1 fvexi AV
38 37 a1i φAV
39 38 3 ssexd φBV
40 39 adantr φ¬ABBV
41 2 1 ressval2 ¬ABRVBVS=RsSetBasendxBA
42 35 36 40 41 syl3anc φ¬ABS=RsSetBasendxBA
43 df-ss BABA=B
44 3 43 sylib φBA=B
45 44 opeq2d φBasendxBA=BasendxB
46 45 oveq2d φRsSetBasendxBA=RsSetBasendxB
47 46 adantr φ¬ABRsSetBasendxBA=RsSetBasendxB
48 42 47 eqtrd φ¬ABS=RsSetBasendxB
49 2 oveq1i S𝑠C=R𝑠B𝑠C
50 ressabs BVCBR𝑠B𝑠C=R𝑠C
51 39 4 50 syl2anc φR𝑠B𝑠C=R𝑠C
52 49 51 eqtrid φS𝑠C=R𝑠C
53 52 opeq2d φScalarndxS𝑠C=ScalarndxR𝑠C
54 53 adantr φ¬ABScalarndxS𝑠C=ScalarndxR𝑠C
55 48 54 oveq12d φ¬ABSsSetScalarndxS𝑠C=RsSetBasendxBsSetScalarndxR𝑠C
56 scandxnbasendx ScalarndxBasendx
57 56 a1i φScalarndxBasendx
58 ovexd φR𝑠CV
59 fvex ScalarndxV
60 fvex BasendxV
61 59 60 setscom RVScalarndxBasendxR𝑠CVBVRsSetScalarndxR𝑠CsSetBasendxB=RsSetBasendxBsSetScalarndxR𝑠C
62 23 57 58 39 61 syl22anc φRsSetScalarndxR𝑠CsSetBasendxB=RsSetBasendxBsSetScalarndxR𝑠C
63 62 adantr φ¬ABRsSetScalarndxR𝑠CsSetBasendxB=RsSetBasendxBsSetScalarndxR𝑠C
64 55 63 eqtr4d φ¬ABSsSetScalarndxS𝑠C=RsSetScalarndxR𝑠CsSetBasendxB
65 eqid R=R
66 2 65 ressmulr BVR=S
67 39 66 syl φR=S
68 67 eqcomd φS=R
69 68 opeq2d φndxS=ndxR
70 69 adantr φ¬ABndxS=ndxR
71 64 70 oveq12d φ¬ABSsSetScalarndxS𝑠CsSetndxS=RsSetScalarndxR𝑠CsSetBasendxBsSetndxR
72 ovexd φRsSetScalarndxR𝑠CV
73 vscandxnbasendx ndxBasendx
74 73 a1i φndxBasendx
75 fvexd φRV
76 fvex ndxV
77 76 60 setscom RsSetScalarndxR𝑠CVndxBasendxRVBVRsSetScalarndxR𝑠CsSetndxRsSetBasendxB=RsSetScalarndxR𝑠CsSetBasendxBsSetndxR
78 72 74 75 39 77 syl22anc φRsSetScalarndxR𝑠CsSetndxRsSetBasendxB=RsSetScalarndxR𝑠CsSetBasendxBsSetndxR
79 78 adantr φ¬ABRsSetScalarndxR𝑠CsSetndxRsSetBasendxB=RsSetScalarndxR𝑠CsSetBasendxBsSetndxR
80 71 79 eqtr4d φ¬ABSsSetScalarndxS𝑠CsSetndxS=RsSetScalarndxR𝑠CsSetndxRsSetBasendxB
81 68 opeq2d φ𝑖ndxS=𝑖ndxR
82 81 adantr φ¬AB𝑖ndxS=𝑖ndxR
83 80 82 oveq12d φ¬ABSsSetScalarndxS𝑠CsSetndxSsSet𝑖ndxS=RsSetScalarndxR𝑠CsSetndxRsSetBasendxBsSet𝑖ndxR
84 ovexd φRsSetScalarndxR𝑠CsSetndxRV
85 ipndxnbasendx 𝑖ndxBasendx
86 85 a1i φ𝑖ndxBasendx
87 fvex 𝑖ndxV
88 87 60 setscom RsSetScalarndxR𝑠CsSetndxRV𝑖ndxBasendxRVBVRsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB=RsSetScalarndxR𝑠CsSetndxRsSetBasendxBsSet𝑖ndxR
89 84 86 75 39 88 syl22anc φRsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB=RsSetScalarndxR𝑠CsSetndxRsSetBasendxBsSet𝑖ndxR
90 89 adantr φ¬ABRsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB=RsSetScalarndxR𝑠CsSetndxRsSetBasendxBsSet𝑖ndxR
91 83 90 eqtr4d φ¬ABSsSetScalarndxS𝑠CsSetndxSsSet𝑖ndxS=RsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB
92 2 ovexi SV
93 2 1 ressbas2 BAB=BaseS
94 3 93 syl φB=BaseS
95 4 94 sseqtrd φCBaseS
96 95 adantr φ¬ABCBaseS
97 sraval SVCBaseSsubringAlgSC=SsSetScalarndxS𝑠CsSetndxSsSet𝑖ndxS
98 92 96 97 sylancr φ¬ABsubringAlgSC=SsSetScalarndxS𝑠CsSetndxSsSet𝑖ndxS
99 10 adantr φ¬ABA=BasesubringAlgRC
100 99 sseq1d φ¬ABABBasesubringAlgRCB
101 35 100 mtbid φ¬AB¬BasesubringAlgRCB
102 fvexd φ¬ABsubringAlgRCV
103 eqid subringAlgRC𝑠B=subringAlgRC𝑠B
104 103 18 ressval2 ¬BasesubringAlgRCBsubringAlgRCVBVsubringAlgRC𝑠B=subringAlgRCsSetBasendxBBasesubringAlgRC
105 101 102 40 104 syl3anc φ¬ABsubringAlgRC𝑠B=subringAlgRCsSetBasendxBBasesubringAlgRC
106 10 ineq2d φBA=BBasesubringAlgRC
107 106 44 eqtr3d φBBasesubringAlgRC=B
108 107 opeq2d φBasendxBBasesubringAlgRC=BasendxB
109 108 oveq2d φsubringAlgRCsSetBasendxBBasesubringAlgRC=subringAlgRCsSetBasendxB
110 109 adantr φ¬ABsubringAlgRCsSetBasendxBBasesubringAlgRC=subringAlgRCsSetBasendxB
111 sraval RVCBaseRsubringAlgRC=RsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxR
112 5 8 111 syl2anc φsubringAlgRC=RsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxR
113 112 oveq1d φsubringAlgRCsSetBasendxB=RsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB
114 113 adantr φ¬ABsubringAlgRCsSetBasendxB=RsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB
115 105 110 114 3eqtrd φ¬ABsubringAlgRC𝑠B=RsSetScalarndxR𝑠CsSetndxRsSet𝑖ndxRsSetBasendxB
116 91 98 115 3eqtr4d φ¬ABsubringAlgSC=subringAlgRC𝑠B
117 34 116 pm2.61dan φsubringAlgSC=subringAlgRC𝑠B