Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpreimaidl.i |
|
2 |
|
cnvimass |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
3 4
|
rhmf |
|
6 |
2 5
|
fssdm |
|
7 |
6
|
adantr |
|
8 |
5
|
adantr |
|
9 |
8
|
ffund |
|
10 |
|
rhmrcl1 |
|
11 |
10
|
adantr |
|
12 |
|
eqid |
|
13 |
3 12
|
ring0cl |
|
14 |
11 13
|
syl |
|
15 |
8
|
fdmd |
|
16 |
14 15
|
eleqtrrd |
|
17 |
|
rhmghm |
|
18 |
|
ghmmhm |
|
19 |
|
eqid |
|
20 |
12 19
|
mhm0 |
|
21 |
17 18 20
|
3syl |
|
22 |
21
|
adantr |
|
23 |
|
rhmrcl2 |
|
24 |
|
eqid |
|
25 |
24 19
|
lidl0cl |
|
26 |
23 25
|
sylan |
|
27 |
22 26
|
eqeltrd |
|
28 |
|
fvimacnv |
|
29 |
28
|
biimpa |
|
30 |
9 16 27 29
|
syl21anc |
|
31 |
30
|
ne0d |
|
32 |
8
|
ffnd |
|
33 |
32
|
ad3antrrr |
|
34 |
11
|
ad3antrrr |
|
35 |
|
simpllr |
|
36 |
6
|
ad2antrr |
|
37 |
36
|
sselda |
|
38 |
37
|
adantr |
|
39 |
|
eqid |
|
40 |
3 39
|
ringcl |
|
41 |
34 35 38 40
|
syl3anc |
|
42 |
36
|
adantr |
|
43 |
42
|
sselda |
|
44 |
|
eqid |
|
45 |
3 44
|
ringacl |
|
46 |
34 41 43 45
|
syl3anc |
|
47 |
17
|
ad4antr |
|
48 |
|
eqid |
|
49 |
3 44 48
|
ghmlin |
|
50 |
47 41 43 49
|
syl3anc |
|
51 |
|
simp-4l |
|
52 |
51 23
|
syl |
|
53 |
|
simpr |
|
54 |
53
|
ad3antrrr |
|
55 |
|
eqid |
|
56 |
3 39 55
|
rhmmul |
|
57 |
51 35 38 56
|
syl3anc |
|
58 |
8
|
ffvelrnda |
|
59 |
58
|
ad2antrr |
|
60 |
|
simplr |
|
61 |
|
elpreima |
|
62 |
61
|
simplbda |
|
63 |
33 60 62
|
syl2anc |
|
64 |
24 4 55
|
lidlmcl |
|
65 |
52 54 59 63 64
|
syl22anc |
|
66 |
57 65
|
eqeltrd |
|
67 |
|
simpr |
|
68 |
|
elpreima |
|
69 |
68
|
simplbda |
|
70 |
33 67 69
|
syl2anc |
|
71 |
24 48
|
lidlacl |
|
72 |
52 54 66 70 71
|
syl22anc |
|
73 |
50 72
|
eqeltrd |
|
74 |
33 46 73
|
elpreimad |
|
75 |
74
|
anasss |
|
76 |
75
|
ralrimivva |
|
77 |
76
|
ralrimiva |
|
78 |
1 3 44 39
|
islidl |
|
79 |
7 31 77 78
|
syl3anbrc |
|