Metamath Proof Explorer


Theorem rhmpreimaidl

Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024)

Ref Expression
Hypothesis rhmpreimaidl.i I=LIdealR
Assertion rhmpreimaidl FRRingHomSJLIdealSF-1JI

Proof

Step Hyp Ref Expression
1 rhmpreimaidl.i I=LIdealR
2 cnvimass F-1JdomF
3 eqid BaseR=BaseR
4 eqid BaseS=BaseS
5 3 4 rhmf FRRingHomSF:BaseRBaseS
6 2 5 fssdm FRRingHomSF-1JBaseR
7 6 adantr FRRingHomSJLIdealSF-1JBaseR
8 5 adantr FRRingHomSJLIdealSF:BaseRBaseS
9 8 ffund FRRingHomSJLIdealSFunF
10 rhmrcl1 FRRingHomSRRing
11 10 adantr FRRingHomSJLIdealSRRing
12 eqid 0R=0R
13 3 12 ring0cl RRing0RBaseR
14 11 13 syl FRRingHomSJLIdealS0RBaseR
15 8 fdmd FRRingHomSJLIdealSdomF=BaseR
16 14 15 eleqtrrd FRRingHomSJLIdealS0RdomF
17 rhmghm FRRingHomSFRGrpHomS
18 ghmmhm FRGrpHomSFRMndHomS
19 eqid 0S=0S
20 12 19 mhm0 FRMndHomSF0R=0S
21 17 18 20 3syl FRRingHomSF0R=0S
22 21 adantr FRRingHomSJLIdealSF0R=0S
23 rhmrcl2 FRRingHomSSRing
24 eqid LIdealS=LIdealS
25 24 19 lidl0cl SRingJLIdealS0SJ
26 23 25 sylan FRRingHomSJLIdealS0SJ
27 22 26 eqeltrd FRRingHomSJLIdealSF0RJ
28 fvimacnv FunF0RdomFF0RJ0RF-1J
29 28 biimpa FunF0RdomFF0RJ0RF-1J
30 9 16 27 29 syl21anc FRRingHomSJLIdealS0RF-1J
31 30 ne0d FRRingHomSJLIdealSF-1J
32 8 ffnd FRRingHomSJLIdealSFFnBaseR
33 32 ad3antrrr FRRingHomSJLIdealSxBaseRaF-1JbF-1JFFnBaseR
34 11 ad3antrrr FRRingHomSJLIdealSxBaseRaF-1JbF-1JRRing
35 simpllr FRRingHomSJLIdealSxBaseRaF-1JbF-1JxBaseR
36 6 ad2antrr FRRingHomSJLIdealSxBaseRF-1JBaseR
37 36 sselda FRRingHomSJLIdealSxBaseRaF-1JaBaseR
38 37 adantr FRRingHomSJLIdealSxBaseRaF-1JbF-1JaBaseR
39 eqid R=R
40 3 39 ringcl RRingxBaseRaBaseRxRaBaseR
41 34 35 38 40 syl3anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JxRaBaseR
42 36 adantr FRRingHomSJLIdealSxBaseRaF-1JF-1JBaseR
43 42 sselda FRRingHomSJLIdealSxBaseRaF-1JbF-1JbBaseR
44 eqid +R=+R
45 3 44 ringacl RRingxRaBaseRbBaseRxRa+RbBaseR
46 34 41 43 45 syl3anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JxRa+RbBaseR
47 17 ad4antr FRRingHomSJLIdealSxBaseRaF-1JbF-1JFRGrpHomS
48 eqid +S=+S
49 3 44 48 ghmlin FRGrpHomSxRaBaseRbBaseRFxRa+Rb=FxRa+SFb
50 47 41 43 49 syl3anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxRa+Rb=FxRa+SFb
51 simp-4l FRRingHomSJLIdealSxBaseRaF-1JbF-1JFRRingHomS
52 51 23 syl FRRingHomSJLIdealSxBaseRaF-1JbF-1JSRing
53 simpr FRRingHomSJLIdealSJLIdealS
54 53 ad3antrrr FRRingHomSJLIdealSxBaseRaF-1JbF-1JJLIdealS
55 eqid S=S
56 3 39 55 rhmmul FRRingHomSxBaseRaBaseRFxRa=FxSFa
57 51 35 38 56 syl3anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxRa=FxSFa
58 8 ffvelcdmda FRRingHomSJLIdealSxBaseRFxBaseS
59 58 ad2antrr FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxBaseS
60 simplr FRRingHomSJLIdealSxBaseRaF-1JbF-1JaF-1J
61 elpreima FFnBaseRaF-1JaBaseRFaJ
62 61 simplbda FFnBaseRaF-1JFaJ
63 33 60 62 syl2anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JFaJ
64 24 4 55 lidlmcl SRingJLIdealSFxBaseSFaJFxSFaJ
65 52 54 59 63 64 syl22anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxSFaJ
66 57 65 eqeltrd FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxRaJ
67 simpr FRRingHomSJLIdealSxBaseRaF-1JbF-1JbF-1J
68 elpreima FFnBaseRbF-1JbBaseRFbJ
69 68 simplbda FFnBaseRbF-1JFbJ
70 33 67 69 syl2anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JFbJ
71 24 48 lidlacl SRingJLIdealSFxRaJFbJFxRa+SFbJ
72 52 54 66 70 71 syl22anc FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxRa+SFbJ
73 50 72 eqeltrd FRRingHomSJLIdealSxBaseRaF-1JbF-1JFxRa+RbJ
74 33 46 73 elpreimad FRRingHomSJLIdealSxBaseRaF-1JbF-1JxRa+RbF-1J
75 74 anasss FRRingHomSJLIdealSxBaseRaF-1JbF-1JxRa+RbF-1J
76 75 ralrimivva FRRingHomSJLIdealSxBaseRaF-1JbF-1JxRa+RbF-1J
77 76 ralrimiva FRRingHomSJLIdealSxBaseRaF-1JbF-1JxRa+RbF-1J
78 1 3 44 39 islidl F-1JIF-1JBaseRF-1JxBaseRaF-1JbF-1JxRa+RbF-1J
79 7 31 77 78 syl3anbrc FRRingHomSJLIdealSF-1JI