Metamath Proof Explorer


Theorem rhmpreimaidl

Description: The preimage of an ideal by a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 30-Jun-2024)

Ref Expression
Hypothesis rhmpreimaidl.i I = LIdeal R
Assertion rhmpreimaidl F R RingHom S J LIdeal S F -1 J I

Proof

Step Hyp Ref Expression
1 rhmpreimaidl.i I = LIdeal R
2 cnvimass F -1 J dom F
3 eqid Base R = Base R
4 eqid Base S = Base S
5 3 4 rhmf F R RingHom S F : Base R Base S
6 2 5 fssdm F R RingHom S F -1 J Base R
7 6 adantr F R RingHom S J LIdeal S F -1 J Base R
8 5 adantr F R RingHom S J LIdeal S F : Base R Base S
9 8 ffund F R RingHom S J LIdeal S Fun F
10 rhmrcl1 F R RingHom S R Ring
11 10 adantr F R RingHom S J LIdeal S R Ring
12 eqid 0 R = 0 R
13 3 12 ring0cl R Ring 0 R Base R
14 11 13 syl F R RingHom S J LIdeal S 0 R Base R
15 8 fdmd F R RingHom S J LIdeal S dom F = Base R
16 14 15 eleqtrrd F R RingHom S J LIdeal S 0 R dom F
17 rhmghm F R RingHom S F R GrpHom S
18 ghmmhm F R GrpHom S F R MndHom S
19 eqid 0 S = 0 S
20 12 19 mhm0 F R MndHom S F 0 R = 0 S
21 17 18 20 3syl F R RingHom S F 0 R = 0 S
22 21 adantr F R RingHom S J LIdeal S F 0 R = 0 S
23 rhmrcl2 F R RingHom S S Ring
24 eqid LIdeal S = LIdeal S
25 24 19 lidl0cl S Ring J LIdeal S 0 S J
26 23 25 sylan F R RingHom S J LIdeal S 0 S J
27 22 26 eqeltrd F R RingHom S J LIdeal S F 0 R J
28 fvimacnv Fun F 0 R dom F F 0 R J 0 R F -1 J
29 28 biimpa Fun F 0 R dom F F 0 R J 0 R F -1 J
30 9 16 27 29 syl21anc F R RingHom S J LIdeal S 0 R F -1 J
31 30 ne0d F R RingHom S J LIdeal S F -1 J
32 8 ffnd F R RingHom S J LIdeal S F Fn Base R
33 32 ad3antrrr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F Fn Base R
34 11 ad3antrrr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J R Ring
35 simpllr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x Base R
36 6 ad2antrr F R RingHom S J LIdeal S x Base R F -1 J Base R
37 36 sselda F R RingHom S J LIdeal S x Base R a F -1 J a Base R
38 37 adantr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J a Base R
39 eqid R = R
40 3 39 ringcl R Ring x Base R a Base R x R a Base R
41 34 35 38 40 syl3anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x R a Base R
42 36 adantr F R RingHom S J LIdeal S x Base R a F -1 J F -1 J Base R
43 42 sselda F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J b Base R
44 eqid + R = + R
45 3 44 ringacl R Ring x R a Base R b Base R x R a + R b Base R
46 34 41 43 45 syl3anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x R a + R b Base R
47 17 ad4antr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F R GrpHom S
48 eqid + S = + S
49 3 44 48 ghmlin F R GrpHom S x R a Base R b Base R F x R a + R b = F x R a + S F b
50 47 41 43 49 syl3anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x R a + R b = F x R a + S F b
51 simp-4l F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F R RingHom S
52 51 23 syl F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J S Ring
53 simpr F R RingHom S J LIdeal S J LIdeal S
54 53 ad3antrrr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J J LIdeal S
55 eqid S = S
56 3 39 55 rhmmul F R RingHom S x Base R a Base R F x R a = F x S F a
57 51 35 38 56 syl3anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x R a = F x S F a
58 8 ffvelrnda F R RingHom S J LIdeal S x Base R F x Base S
59 58 ad2antrr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x Base S
60 simplr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J a F -1 J
61 elpreima F Fn Base R a F -1 J a Base R F a J
62 61 simplbda F Fn Base R a F -1 J F a J
63 33 60 62 syl2anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F a J
64 24 4 55 lidlmcl S Ring J LIdeal S F x Base S F a J F x S F a J
65 52 54 59 63 64 syl22anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x S F a J
66 57 65 eqeltrd F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x R a J
67 simpr F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J b F -1 J
68 elpreima F Fn Base R b F -1 J b Base R F b J
69 68 simplbda F Fn Base R b F -1 J F b J
70 33 67 69 syl2anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F b J
71 24 48 lidlacl S Ring J LIdeal S F x R a J F b J F x R a + S F b J
72 52 54 66 70 71 syl22anc F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x R a + S F b J
73 50 72 eqeltrd F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J F x R a + R b J
74 33 46 73 elpreimad F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x R a + R b F -1 J
75 74 anasss F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x R a + R b F -1 J
76 75 ralrimivva F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x R a + R b F -1 J
77 76 ralrimiva F R RingHom S J LIdeal S x Base R a F -1 J b F -1 J x R a + R b F -1 J
78 1 3 44 39 islidl F -1 J I F -1 J Base R F -1 J x Base R a F -1 J b F -1 J x R a + R b F -1 J
79 7 31 77 78 syl3anbrc F R RingHom S J LIdeal S F -1 J I