Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ricdrng1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brric | |
|
2 | n0 | |
|
3 | 1 2 | bitri | |
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | rimf1o | |
7 | f1ofo | |
|
8 | foima | |
|
9 | 6 7 8 | 3syl | |
10 | 9 | oveq2d | |
11 | rimrcl2 | |
|
12 | 5 | ressid | |
13 | 11 12 | syl | |
14 | 10 13 | eqtr2d | |
15 | 14 | adantr | |
16 | eqid | |
|
17 | eqid | |
|
18 | rimrhm | |
|
19 | 18 | adantr | |
20 | 4 | sdrgid | |
21 | 20 | adantl | |
22 | forn | |
|
23 | 6 7 22 | 3syl | |
24 | 23 | adantr | |
25 | rhmrcl2 | |
|
26 | eqid | |
|
27 | 5 26 | ringidcl | |
28 | 18 25 27 | 3syl | |
29 | eqid | |
|
30 | eqid | |
|
31 | 29 30 | drngunz | |
32 | 31 | adantl | |
33 | f1of1 | |
|
34 | 6 33 | syl | |
35 | drngring | |
|
36 | 4 30 | ringidcl | |
37 | 35 36 | syl | |
38 | 4 29 | ring0cl | |
39 | 35 38 | syl | |
40 | 37 39 | jca | |
41 | f1veqaeq | |
|
42 | 34 40 41 | syl2an | |
43 | 42 | imp | |
44 | 32 43 | mteqand | |
45 | 30 26 | rhm1 | |
46 | 19 45 | syl | |
47 | rhmghm | |
|
48 | 29 17 | ghmid | |
49 | 19 47 48 | 3syl | |
50 | 44 46 49 | 3netr3d | |
51 | nelsn | |
|
52 | 50 51 | syl | |
53 | nelne1 | |
|
54 | 28 52 53 | syl2an2r | |
55 | 24 54 | eqnetrd | |
56 | 16 17 19 21 55 | imadrhmcl | |
57 | 15 56 | eqeltrd | |
58 | 57 | ex | |
59 | 58 | exlimiv | |
60 | 59 | imp | |
61 | 3 60 | sylanb | |