Metamath Proof Explorer


Theorem ricdrng1

Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025)

Ref Expression
Assertion ricdrng1 R𝑟SRDivRingSDivRing

Proof

Step Hyp Ref Expression
1 brric R𝑟SRRingIsoS
2 n0 RRingIsoSffRRingIsoS
3 1 2 bitri R𝑟SffRRingIsoS
4 eqid BaseR=BaseR
5 eqid BaseS=BaseS
6 4 5 rimf1o fRRingIsoSf:BaseR1-1 ontoBaseS
7 f1ofo f:BaseR1-1 ontoBaseSf:BaseRontoBaseS
8 foima f:BaseRontoBaseSfBaseR=BaseS
9 6 7 8 3syl fRRingIsoSfBaseR=BaseS
10 9 oveq2d fRRingIsoSS𝑠fBaseR=S𝑠BaseS
11 rimrcl2 fRRingIsoSSRing
12 5 ressid SRingS𝑠BaseS=S
13 11 12 syl fRRingIsoSS𝑠BaseS=S
14 10 13 eqtr2d fRRingIsoSS=S𝑠fBaseR
15 14 adantr fRRingIsoSRDivRingS=S𝑠fBaseR
16 eqid S𝑠fBaseR=S𝑠fBaseR
17 eqid 0S=0S
18 rimrhm fRRingIsoSfRRingHomS
19 18 adantr fRRingIsoSRDivRingfRRingHomS
20 4 sdrgid RDivRingBaseRSubDRingR
21 20 adantl fRRingIsoSRDivRingBaseRSubDRingR
22 forn f:BaseRontoBaseSranf=BaseS
23 6 7 22 3syl fRRingIsoSranf=BaseS
24 23 adantr fRRingIsoSRDivRingranf=BaseS
25 rhmrcl2 fRRingHomSSRing
26 eqid 1S=1S
27 5 26 ringidcl SRing1SBaseS
28 18 25 27 3syl fRRingIsoS1SBaseS
29 eqid 0R=0R
30 eqid 1R=1R
31 29 30 drngunz RDivRing1R0R
32 31 adantl fRRingIsoSRDivRing1R0R
33 f1of1 f:BaseR1-1 ontoBaseSf:BaseR1-1BaseS
34 6 33 syl fRRingIsoSf:BaseR1-1BaseS
35 drngring RDivRingRRing
36 4 30 ringidcl RRing1RBaseR
37 35 36 syl RDivRing1RBaseR
38 4 29 ring0cl RRing0RBaseR
39 35 38 syl RDivRing0RBaseR
40 37 39 jca RDivRing1RBaseR0RBaseR
41 f1veqaeq f:BaseR1-1BaseS1RBaseR0RBaseRf1R=f0R1R=0R
42 34 40 41 syl2an fRRingIsoSRDivRingf1R=f0R1R=0R
43 42 imp fRRingIsoSRDivRingf1R=f0R1R=0R
44 32 43 mteqand fRRingIsoSRDivRingf1Rf0R
45 30 26 rhm1 fRRingHomSf1R=1S
46 19 45 syl fRRingIsoSRDivRingf1R=1S
47 rhmghm fRRingHomSfRGrpHomS
48 29 17 ghmid fRGrpHomSf0R=0S
49 19 47 48 3syl fRRingIsoSRDivRingf0R=0S
50 44 46 49 3netr3d fRRingIsoSRDivRing1S0S
51 nelsn 1S0S¬1S0S
52 50 51 syl fRRingIsoSRDivRing¬1S0S
53 nelne1 1SBaseS¬1S0SBaseS0S
54 28 52 53 syl2an2r fRRingIsoSRDivRingBaseS0S
55 24 54 eqnetrd fRRingIsoSRDivRingranf0S
56 16 17 19 21 55 imadrhmcl fRRingIsoSRDivRingS𝑠fBaseRDivRing
57 15 56 eqeltrd fRRingIsoSRDivRingSDivRing
58 57 ex fRRingIsoSRDivRingSDivRing
59 58 exlimiv ffRRingIsoSRDivRingSDivRing
60 59 imp ffRRingIsoSRDivRingSDivRing
61 3 60 sylanb R𝑟SRDivRingSDivRing