Metamath Proof Explorer


Theorem rlimcxp

Description: Any power to a positive exponent of a converging sequence also converges. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Hypotheses rlimcxp.1 φnABV
rlimcxp.2 φnAB0
rlimcxp.3 φC+
Assertion rlimcxp φnABC0

Proof

Step Hyp Ref Expression
1 rlimcxp.1 φnABV
2 rlimcxp.2 φnAB0
3 rlimcxp.3 φC+
4 rlimf nAB0nAB:domnAB
5 2 4 syl φnAB:domnAB
6 1 ralrimiva φnABV
7 dmmptg nABVdomnAB=A
8 6 7 syl φdomnAB=A
9 8 feq2d φnAB:domnABnAB:A
10 5 9 mpbid φnAB:A
11 eqid nAB=nAB
12 11 fmpt nABnAB:A
13 10 12 sylibr φnAB
14 13 adantr φx+nAB
15 simpr φx+x+
16 3 adantr φx+C+
17 16 rprecred φx+1C
18 15 17 rpcxpcld φx+x1C+
19 2 adantr φx+nAB0
20 14 18 19 rlimi φx+ynAynB0<x1C
21 1 2 rlimmptrcl φnAB
22 21 adantlr φx+nAB
23 22 abscld φx+nAB
24 22 absge0d φx+nA0B
25 18 adantr φx+nAx1C+
26 25 rpred φx+nAx1C
27 25 rpge0d φx+nA0x1C
28 3 ad2antrr φx+nAC+
29 23 24 26 27 28 cxplt2d φx+nAB<x1CBC<x1CC
30 22 subid1d φx+nAB0=B
31 30 fveq2d φx+nAB0=B
32 31 breq1d φx+nAB0<x1CB<x1C
33 28 rpred φx+nAC
34 abscxp2 BCBC=BC
35 22 33 34 syl2anc φx+nABC=BC
36 28 rpcnd φx+nAC
37 28 rpne0d φx+nAC0
38 36 37 recid2d φx+nA1CC=1
39 38 oveq2d φx+nAx1CC=x1
40 simplr φx+nAx+
41 17 adantr φx+nA1C
42 40 41 36 cxpmuld φx+nAx1CC=x1CC
43 40 rpcnd φx+nAx
44 43 cxp1d φx+nAx1=x
45 39 42 44 3eqtr3rd φx+nAx=x1CC
46 35 45 breq12d φx+nABC<xBC<x1CC
47 29 32 46 3bitr4d φx+nAB0<x1CBC<x
48 47 biimpd φx+nAB0<x1CBC<x
49 48 imim2d φx+nAynB0<x1CynBC<x
50 49 ralimdva φx+nAynB0<x1CnAynBC<x
51 50 reximdv φx+ynAynB0<x1CynAynBC<x
52 20 51 mpd φx+ynAynBC<x
53 52 ralrimiva φx+ynAynBC<x
54 3 rpcnd φC
55 54 adantr φnAC
56 21 55 cxpcld φnABC
57 56 ralrimiva φnABC
58 rlimss nAB0domnAB
59 2 58 syl φdomnAB
60 8 59 eqsstrrd φA
61 57 60 rlim0 φnABC0x+ynAynBC<x
62 53 61 mpbird φnABC0