Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that F given below (see rngqiprngimf ) is an isomorphism. In our proof, however we show that F is linear regarding the multiplication ( rngqiprnglin ) via rngqiprnglinlem1 instead. (Contributed by AV, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idl1cntr.r | |
|
rng2idl1cntr.i | |
||
rng2idl1cntr.j | |
||
rng2idl1cntr.u | |
||
rng2idl1cntr.1 | |
||
rng2idl1cntr.m | |
||
Assertion | rng2idl1cntr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idl1cntr.r | |
|
2 | rng2idl1cntr.i | |
|
3 | rng2idl1cntr.j | |
|
4 | rng2idl1cntr.u | |
|
5 | rng2idl1cntr.1 | |
|
6 | rng2idl1cntr.m | |
|
7 | eqid | |
|
8 | 3 7 | ressbasss | |
9 | eqid | |
|
10 | 9 5 | ringidcl | |
11 | 4 10 | syl | |
12 | 8 11 | sselid | |
13 | 1 | adantr | |
14 | 12 | adantr | |
15 | simpr | |
|
16 | eqid | |
|
17 | 7 16 | rngass | |
18 | 13 14 15 14 17 | syl13anc | |
19 | eqid | |
|
20 | 4 | adantr | |
21 | 1 2 3 4 7 16 5 | rngqiprngghmlem1 | |
22 | 9 19 5 20 21 | ringridmd | |
23 | 3 16 | ressmulr | |
24 | 2 23 | syl | |
25 | 24 | oveqd | |
26 | 25 | eqeq1d | |
27 | 26 | adantr | |
28 | 22 27 | mpbird | |
29 | 2 | 2idllidld | |
30 | eqid | |
|
31 | 7 30 | lidlss | |
32 | 3 7 | ressbas2 | |
33 | 32 | eqcomd | |
34 | 29 31 33 | 3syl | |
35 | 34 29 | eqeltrd | |
36 | 2 3 9 | 2idlbas | |
37 | ringrng | |
|
38 | 4 37 | syl | |
39 | 3 38 | eqeltrrid | |
40 | 1 2 39 | rng2idlsubrng | Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |- |
41 | 36 40 | eqeltrd | Could not format ( ph -> ( Base ` J ) e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> ( Base ` J ) e. ( SubRng ` R ) ) with typecode |- |
42 | subrngsubg | Could not format ( ( Base ` J ) e. ( SubRng ` R ) -> ( Base ` J ) e. ( SubGrp ` R ) ) : No typesetting found for |- ( ( Base ` J ) e. ( SubRng ` R ) -> ( Base ` J ) e. ( SubGrp ` R ) ) with typecode |- | |
43 | eqid | |
|
44 | 43 | subg0cl | |
45 | 41 42 44 | 3syl | |
46 | 1 35 45 | 3jca | |
47 | 11 | anim1ci | |
48 | 43 7 16 30 | rnglidlmcl | |
49 | 46 47 48 | syl2an2r | |
50 | 9 19 5 20 49 | ringlidmd | |
51 | 24 | oveqd | |
52 | 51 | eqeq1d | |
53 | 52 | adantr | |
54 | 50 53 | mpbird | |
55 | 18 28 54 | 3eqtr3d | |
56 | 55 | ralrimiva | |
57 | ssidd | |
|
58 | 6 7 | mgpbas | |
59 | 6 16 | mgpplusg | |
60 | eqid | |
|
61 | 58 59 60 | elcntz | |
62 | 57 61 | syl | |
63 | 12 56 62 | mpbir2and | |
64 | 58 60 | cntrval | |
65 | 63 64 | eleqtrdi | |