Metamath Proof Explorer


Theorem rng2idl1cntr

Description: The unity of a two-sided ideal of a non-unital ring is central, i.e., an element of the center of the multiplicative semigroup of the non-unital ring. This is part of the proof given in MathOverflow, which seems to be sufficient to show that F given below (see rngqiprngimf ) is an isomorphism. In our proof, however we show that F is linear regarding the multiplication ( rngqiprnglin ) via rngqiprnglinlem1 instead. (Contributed by AV, 13-Feb-2025)

Ref Expression
Hypotheses rng2idl1cntr.r φRRng
rng2idl1cntr.i φI2IdealR
rng2idl1cntr.j J=R𝑠I
rng2idl1cntr.u φJRing
rng2idl1cntr.1 1˙=1J
rng2idl1cntr.m M=mulGrpR
Assertion rng2idl1cntr φ1˙CntrM

Proof

Step Hyp Ref Expression
1 rng2idl1cntr.r φRRng
2 rng2idl1cntr.i φI2IdealR
3 rng2idl1cntr.j J=R𝑠I
4 rng2idl1cntr.u φJRing
5 rng2idl1cntr.1 1˙=1J
6 rng2idl1cntr.m M=mulGrpR
7 eqid BaseR=BaseR
8 3 7 ressbasss BaseJBaseR
9 eqid BaseJ=BaseJ
10 9 5 ringidcl JRing1˙BaseJ
11 4 10 syl φ1˙BaseJ
12 8 11 sselid φ1˙BaseR
13 1 adantr φxBaseRRRng
14 12 adantr φxBaseR1˙BaseR
15 simpr φxBaseRxBaseR
16 eqid R=R
17 7 16 rngass RRng1˙BaseRxBaseR1˙BaseR1˙RxR1˙=1˙RxR1˙
18 13 14 15 14 17 syl13anc φxBaseR1˙RxR1˙=1˙RxR1˙
19 eqid J=J
20 4 adantr φxBaseRJRing
21 1 2 3 4 7 16 5 rngqiprngghmlem1 φxBaseR1˙RxBaseJ
22 9 19 5 20 21 ringridmd φxBaseR1˙RxJ1˙=1˙Rx
23 3 16 ressmulr I2IdealRR=J
24 2 23 syl φR=J
25 24 oveqd φ1˙RxR1˙=1˙RxJ1˙
26 25 eqeq1d φ1˙RxR1˙=1˙Rx1˙RxJ1˙=1˙Rx
27 26 adantr φxBaseR1˙RxR1˙=1˙Rx1˙RxJ1˙=1˙Rx
28 22 27 mpbird φxBaseR1˙RxR1˙=1˙Rx
29 2 2idllidld φILIdealR
30 eqid LIdealR=LIdealR
31 7 30 lidlss ILIdealRIBaseR
32 3 7 ressbas2 IBaseRI=BaseJ
33 32 eqcomd IBaseRBaseJ=I
34 29 31 33 3syl φBaseJ=I
35 34 29 eqeltrd φBaseJLIdealR
36 2 3 9 2idlbas φBaseJ=I
37 ringrng JRingJRng
38 4 37 syl φJRng
39 3 38 eqeltrrid φR𝑠IRng
40 1 2 39 rng2idlsubrng Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |-
41 36 40 eqeltrd Could not format ( ph -> ( Base ` J ) e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> ( Base ` J ) e. ( SubRng ` R ) ) with typecode |-
42 subrngsubg Could not format ( ( Base ` J ) e. ( SubRng ` R ) -> ( Base ` J ) e. ( SubGrp ` R ) ) : No typesetting found for |- ( ( Base ` J ) e. ( SubRng ` R ) -> ( Base ` J ) e. ( SubGrp ` R ) ) with typecode |-
43 eqid 0R=0R
44 43 subg0cl BaseJSubGrpR0RBaseJ
45 41 42 44 3syl φ0RBaseJ
46 1 35 45 3jca φRRngBaseJLIdealR0RBaseJ
47 11 anim1ci φxBaseRxBaseR1˙BaseJ
48 43 7 16 30 rnglidlmcl RRngBaseJLIdealR0RBaseJxBaseR1˙BaseJxR1˙BaseJ
49 46 47 48 syl2an2r φxBaseRxR1˙BaseJ
50 9 19 5 20 49 ringlidmd φxBaseR1˙JxR1˙=xR1˙
51 24 oveqd φ1˙RxR1˙=1˙JxR1˙
52 51 eqeq1d φ1˙RxR1˙=xR1˙1˙JxR1˙=xR1˙
53 52 adantr φxBaseR1˙RxR1˙=xR1˙1˙JxR1˙=xR1˙
54 50 53 mpbird φxBaseR1˙RxR1˙=xR1˙
55 18 28 54 3eqtr3d φxBaseR1˙Rx=xR1˙
56 55 ralrimiva φxBaseR1˙Rx=xR1˙
57 ssidd φBaseRBaseR
58 6 7 mgpbas BaseR=BaseM
59 6 16 mgpplusg R=+M
60 eqid CntzM=CntzM
61 58 59 60 elcntz BaseRBaseR1˙CntzMBaseR1˙BaseRxBaseR1˙Rx=xR1˙
62 57 61 syl φ1˙CntzMBaseR1˙BaseRxBaseR1˙Rx=xR1˙
63 12 56 62 mpbir2and φ1˙CntzMBaseR
64 58 60 cntrval CntzMBaseR=CntrM
65 63 64 eleqtrdi φ1˙CntrM