Metamath Proof Explorer


Theorem rpnnen2lem11

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypotheses rpnnen2.1 F=x𝒫nifnx13n0
rpnnen2.2 φA
rpnnen2.3 φB
rpnnen2.4 φmAB
rpnnen2.5 φnn<mnAnB
rpnnen2.6 ψkFAk=kFBk
Assertion rpnnen2lem11 φ¬ψ

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 rpnnen2.2 φA
3 rpnnen2.3 φB
4 rpnnen2.4 φmAB
5 rpnnen2.5 φnn<mnAnB
6 rpnnen2.6 ψkFAk=kFBk
7 eldifi mABmA
8 ssel2 AmAm
9 7 8 sylan2 AmABm
10 2 4 9 syl2anc φm
11 1 rpnnen2lem6 BmkmFBk
12 3 10 11 syl2anc φkmFBk
13 3nn 3
14 nnrecre 313
15 13 14 ax-mp 13
16 10 nnnn0d φm0
17 reexpcl 13m013m
18 15 16 17 sylancr φ13m
19 1 rpnnen2lem6 AmkmFAk
20 2 10 19 syl2anc φkmFAk
21 nnrp 33+
22 rpreccl 3+13+
23 13 21 22 mp2b 13+
24 10 nnzd φm
25 rpexpcl 13+m13m+
26 23 24 25 sylancr φ13m+
27 26 rpred φ13m
28 27 rehalfcld φ13m2
29 4 snssd φmAB
30 2 ssdifd φABB
31 29 30 sstrd φmB
32 10 snssd φm
33 ssconb BmBmmB
34 3 32 33 syl2anc φBmmB
35 31 34 mpbird φBm
36 difssd φm
37 1 rpnnen2lem7 BmmmkmFBkkmFmk
38 35 36 10 37 syl3anc φkmFBkkmFmk
39 1 rpnnen2lem9 mkmFmk=0+13m+1113
40 10 39 syl φkmFmk=0+13m+1113
41 15 recni 13
42 expp1 13m013m+1=13m13
43 41 16 42 sylancr φ13m+1=13m13
44 27 recnd φ13m
45 3cn 3
46 3ne0 30
47 divrec 13m33013m3=13m13
48 45 46 47 mp3an23 13m13m3=13m13
49 44 48 syl φ13m3=13m13
50 43 49 eqtr4d φ13m+1=13m3
51 50 oveq1d φ13m+1113=13m3113
52 ax-1cn 1
53 45 46 pm3.2i 330
54 divsubdir 31330313=3313
55 45 52 53 54 mp3an 313=3313
56 3m1e2 31=2
57 56 oveq1i 313=23
58 45 46 dividi 33=1
59 58 oveq1i 3313=113
60 55 57 59 3eqtr3ri 113=23
61 60 oveq2i 13m3113=13m323
62 2cnne0 220
63 divcan7 13m22033013m323=13m2
64 62 53 63 mp3an23 13m13m323=13m2
65 44 64 syl φ13m323=13m2
66 61 65 eqtrid φ13m3113=13m2
67 51 66 eqtrd φ13m+1113=13m2
68 67 oveq2d φ0+13m+1113=0+13m2
69 28 recnd φ13m2
70 69 addlidd φ0+13m2=13m2
71 40 68 70 3eqtrd φkmFmk=13m2
72 38 71 breqtrd φkmFBk13m2
73 rphalflt 13m+13m2<13m
74 26 73 syl φ13m2<13m
75 12 28 27 72 74 lelttrd φkmFBk<13m
76 eluznn mkmk
77 10 76 sylan φkmk
78 1 rpnnen2lem1 mkFmk=ifkm13k0
79 32 77 78 syl2an2r φkmFmk=ifkm13k0
80 79 sumeq2dv φkmFmk=kmifkm13k0
81 uzid mmm
82 24 81 syl φmm
83 82 snssd φmm
84 vex mV
85 oveq2 k=m13k=13m
86 85 eleq1d k=m13k13m
87 84 86 ralsn km13k13m
88 44 87 sylibr φkm13k
89 ssidd φmm
90 89 orcd φmmmFin
91 sumss2 mmkm13kmmmFinkm13k=kmifkm13k0
92 83 88 90 91 syl21anc φkm13k=kmifkm13k0
93 85 sumsn m13mkm13k=13m
94 10 44 93 syl2anc φkm13k=13m
95 80 92 94 3eqtr2d φkmFmk=13m
96 4 7 syl φmA
97 96 snssd φmA
98 1 rpnnen2lem7 mAAmkmFmkkmFAk
99 97 2 10 98 syl3anc φkmFmkkmFAk
100 95 99 eqbrtrrd φ13mkmFAk
101 12 18 20 75 100 ltletrd φkmFBk<kmFAk
102 12 101 gtned φkmFAkkmFBk
103 1 2 3 4 5 6 rpnnen2lem10 φψkmFAk=kmFBk
104 103 ex φψkmFAk=kmFBk
105 104 necon3ad φkmFAkkmFBk¬ψ
106 102 105 mpd φ¬ψ