| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
|
| 2 |
|
ovex |
|
| 3 |
|
elpwi |
|
| 4 |
|
nnuz |
|
| 5 |
4
|
sumeq1i |
|
| 6 |
|
1nn |
|
| 7 |
1
|
rpnnen2lem6 |
|
| 8 |
6 7
|
mpan2 |
|
| 9 |
5 8
|
eqeltrid |
|
| 10 |
3 9
|
syl |
|
| 11 |
|
1zzd |
|
| 12 |
|
eqidd |
|
| 13 |
1
|
rpnnen2lem2 |
|
| 14 |
3 13
|
syl |
|
| 15 |
14
|
ffvelcdmda |
|
| 16 |
1
|
rpnnen2lem5 |
|
| 17 |
3 6 16
|
sylancl |
|
| 18 |
|
ssid |
|
| 19 |
1
|
rpnnen2lem4 |
|
| 20 |
18 19
|
mp3an2 |
|
| 21 |
20
|
simpld |
|
| 22 |
3 21
|
sylan |
|
| 23 |
4 11 12 15 17 22
|
isumge0 |
|
| 24 |
|
halfre |
|
| 25 |
24
|
a1i |
|
| 26 |
|
1re |
|
| 27 |
26
|
a1i |
|
| 28 |
1
|
rpnnen2lem7 |
|
| 29 |
18 6 28
|
mp3an23 |
|
| 30 |
3 29
|
syl |
|
| 31 |
|
eqid |
|
| 32 |
|
eqidd |
|
| 33 |
|
elnnuz |
|
| 34 |
1
|
rpnnen2lem2 |
|
| 35 |
18 34
|
ax-mp |
|
| 36 |
35
|
ffvelcdmi |
|
| 37 |
36
|
recnd |
|
| 38 |
33 37
|
sylbir |
|
| 39 |
38
|
adantl |
|
| 40 |
1
|
rpnnen2lem3 |
|
| 41 |
40
|
a1i |
|
| 42 |
31 11 32 39 41
|
isumclim |
|
| 43 |
30 42
|
breqtrd |
|
| 44 |
5 43
|
eqbrtrid |
|
| 45 |
|
halflt1 |
|
| 46 |
24 26 45
|
ltleii |
|
| 47 |
46
|
a1i |
|
| 48 |
10 25 27 44 47
|
letrd |
|
| 49 |
|
elicc01 |
|
| 50 |
10 23 48 49
|
syl3anbrc |
|
| 51 |
|
elpwi |
|
| 52 |
|
ssdifss |
|
| 53 |
|
ssdifss |
|
| 54 |
|
unss |
|
| 55 |
54
|
biimpi |
|
| 56 |
52 53 55
|
syl2an |
|
| 57 |
3 51 56
|
syl2an |
|
| 58 |
|
eqss |
|
| 59 |
|
ssdif0 |
|
| 60 |
|
ssdif0 |
|
| 61 |
59 60
|
anbi12i |
|
| 62 |
|
un00 |
|
| 63 |
58 61 62
|
3bitri |
|
| 64 |
63
|
necon3bii |
|
| 65 |
64
|
biimpi |
|
| 66 |
|
nnwo |
|
| 67 |
57 65 66
|
syl2an |
|
| 68 |
67
|
ex |
|
| 69 |
57
|
sselda |
|
| 70 |
|
df-ral |
|
| 71 |
|
con34b |
|
| 72 |
|
eldif |
|
| 73 |
|
eldif |
|
| 74 |
72 73
|
orbi12i |
|
| 75 |
|
elun |
|
| 76 |
|
xor |
|
| 77 |
74 75 76
|
3bitr4ri |
|
| 78 |
77
|
con1bii |
|
| 79 |
78
|
imbi2i |
|
| 80 |
71 79
|
bitri |
|
| 81 |
80
|
albii |
|
| 82 |
70 81
|
bitri |
|
| 83 |
|
alral |
|
| 84 |
|
nnre |
|
| 85 |
|
nnre |
|
| 86 |
|
ltnle |
|
| 87 |
84 85 86
|
syl2anr |
|
| 88 |
87
|
imbi1d |
|
| 89 |
88
|
ralbidva |
|
| 90 |
83 89
|
imbitrrid |
|
| 91 |
82 90
|
biimtrid |
|
| 92 |
69 91
|
syl |
|
| 93 |
92
|
reximdva |
|
| 94 |
68 93
|
syld |
|
| 95 |
|
rexun |
|
| 96 |
94 95
|
imbitrdi |
|
| 97 |
|
simpll |
|
| 98 |
|
simplr |
|
| 99 |
|
simprl |
|
| 100 |
|
simprr |
|
| 101 |
|
biid |
|
| 102 |
1 97 98 99 100 101
|
rpnnen2lem11 |
|
| 103 |
102
|
rexlimdvaa |
|
| 104 |
|
simplr |
|
| 105 |
|
simpll |
|
| 106 |
|
simprl |
|
| 107 |
|
simprr |
|
| 108 |
|
bicom |
|
| 109 |
108
|
imbi2i |
|
| 110 |
109
|
ralbii |
|
| 111 |
107 110
|
sylibr |
|
| 112 |
|
eqcom |
|
| 113 |
1 104 105 106 111 112
|
rpnnen2lem11 |
|
| 114 |
113
|
rexlimdvaa |
|
| 115 |
103 114
|
jaod |
|
| 116 |
3 51 115
|
syl2an |
|
| 117 |
96 116
|
syld |
|
| 118 |
117
|
necon4ad |
|
| 119 |
|
fveq2 |
|
| 120 |
119
|
fveq1d |
|
| 121 |
120
|
sumeq2sdv |
|
| 122 |
118 121
|
impbid1 |
|
| 123 |
50 122
|
dom2 |
|
| 124 |
2 123
|
ax-mp |
|