Metamath Proof Explorer


Theorem selbergr

Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of Shapiro, p. 428. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion selbergr x+Rxlogx+d=1xΛdRxdx𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 reex V
3 rpssre +
4 2 3 ssexi +V
5 4 a1i +V
6 ovexd x+ψxlogx+d=1xΛdψxdx2logxV
7 ovexd x+d=1xΛddlogxV
8 eqidd x+ψxlogx+d=1xΛdψxdx2logx=x+ψxlogx+d=1xΛdψxdx2logx
9 eqidd x+d=1xΛddlogx=x+d=1xΛddlogx
10 5 6 7 8 9 offval2 x+ψxlogx+d=1xΛdψxdx2logxfx+d=1xΛddlogx=x+ψxlogx+d=1xΛdψxdx-2logx-d=1xΛddlogx
11 10 mptru x+ψxlogx+d=1xΛdψxdx2logxfx+d=1xΛddlogx=x+ψxlogx+d=1xΛdψxdx-2logx-d=1xΛddlogx
12 1 pntrf R:+
13 12 ffvelcdmi x+Rx
14 13 recnd x+Rx
15 relogcl x+logx
16 15 recnd x+logx
17 14 16 mulcld x+Rxlogx
18 fzfid x+1xFin
19 elfznn d1xd
20 19 adantl x+d1xd
21 vmacl dΛd
22 20 21 syl x+d1xΛd
23 22 recnd x+d1xΛd
24 rpre x+x
25 nndivre xdxd
26 24 19 25 syl2an x+d1xxd
27 chpcl xdψxd
28 26 27 syl x+d1xψxd
29 28 recnd x+d1xψxd
30 23 29 mulcld x+d1xΛdψxd
31 18 30 fsumcl x+d=1xΛdψxd
32 17 31 addcld x+Rxlogx+d=1xΛdψxd
33 rpcn x+x
34 rpne0 x+x0
35 32 33 34 divcld x+Rxlogx+d=1xΛdψxdx
36 22 20 nndivred x+d1xΛdd
37 36 recnd x+d1xΛdd
38 18 37 fsumcl x+d=1xΛdd
39 35 38 16 nnncan2d x+Rxlogx+d=1xΛdψxdx-logx-d=1xΛddlogx=Rxlogx+d=1xΛdψxdxd=1xΛdd
40 chpcl xψx
41 24 40 syl x+ψx
42 41 recnd x+ψx
43 42 16 mulcld x+ψxlogx
44 43 31 addcld x+ψxlogx+d=1xΛdψxd
45 44 33 34 divcld x+ψxlogx+d=1xΛdψxdx
46 45 16 16 subsub4d x+ψxlogx+d=1xΛdψxdx-logx-logx=ψxlogx+d=1xΛdψxdxlogx+logx
47 1 pntrval x+Rx=ψxx
48 47 oveq1d x+Rxlogx=ψxxlogx
49 42 33 16 subdird x+ψxxlogx=ψxlogxxlogx
50 48 49 eqtrd x+Rxlogx=ψxlogxxlogx
51 50 oveq1d x+Rxlogx+d=1xΛdψxd=ψxlogx-xlogx+d=1xΛdψxd
52 33 16 mulcld x+xlogx
53 43 31 52 addsubd x+ψxlogx+d=1xΛdψxd-xlogx=ψxlogx-xlogx+d=1xΛdψxd
54 51 53 eqtr4d x+Rxlogx+d=1xΛdψxd=ψxlogx+d=1xΛdψxd-xlogx
55 54 oveq1d x+Rxlogx+d=1xΛdψxdx=ψxlogx+d=1xΛdψxd-xlogxx
56 rpcnne0 x+xx0
57 divsubdir ψxlogx+d=1xΛdψxdxlogxxx0ψxlogx+d=1xΛdψxd-xlogxx=ψxlogx+d=1xΛdψxdxxlogxx
58 44 52 56 57 syl3anc x+ψxlogx+d=1xΛdψxd-xlogxx=ψxlogx+d=1xΛdψxdxxlogxx
59 16 33 34 divcan3d x+xlogxx=logx
60 59 oveq2d x+ψxlogx+d=1xΛdψxdxxlogxx=ψxlogx+d=1xΛdψxdxlogx
61 55 58 60 3eqtrd x+Rxlogx+d=1xΛdψxdx=ψxlogx+d=1xΛdψxdxlogx
62 61 oveq1d x+Rxlogx+d=1xΛdψxdxlogx=ψxlogx+d=1xΛdψxdx-logx-logx
63 16 2timesd x+2logx=logx+logx
64 63 oveq2d x+ψxlogx+d=1xΛdψxdx2logx=ψxlogx+d=1xΛdψxdxlogx+logx
65 46 62 64 3eqtr4d x+Rxlogx+d=1xΛdψxdxlogx=ψxlogx+d=1xΛdψxdx2logx
66 65 oveq1d x+Rxlogx+d=1xΛdψxdx-logx-d=1xΛddlogx=ψxlogx+d=1xΛdψxdx-2logx-d=1xΛddlogx
67 33 38 mulcld x+xd=1xΛdd
68 divsubdir Rxlogx+d=1xΛdψxdxd=1xΛddxx0Rxlogx+d=1xΛdψxd-xd=1xΛddx=Rxlogx+d=1xΛdψxdxxd=1xΛddx
69 32 67 56 68 syl3anc x+Rxlogx+d=1xΛdψxd-xd=1xΛddx=Rxlogx+d=1xΛdψxdxxd=1xΛddx
70 17 31 67 addsubassd x+Rxlogx+d=1xΛdψxd-xd=1xΛdd=Rxlogx+d=1xΛdψxd-xd=1xΛdd
71 33 adantr x+d1xx
72 71 37 mulcld x+d1xxΛdd
73 18 30 72 fsumsub x+d=1xΛdψxdxΛdd=d=1xΛdψxdd=1xxΛdd
74 26 recnd x+d1xxd
75 23 29 74 subdid x+d1xΛdψxdxd=ΛdψxdΛdxd
76 19 nnrpd d1xd+
77 rpdivcl x+d+xd+
78 76 77 sylan2 x+d1xxd+
79 1 pntrval xd+Rxd=ψxdxd
80 78 79 syl x+d1xRxd=ψxdxd
81 80 oveq2d x+d1xΛdRxd=Λdψxdxd
82 20 nnrpd x+d1xd+
83 rpcnne0 d+dd0
84 82 83 syl x+d1xdd0
85 div12 xΛddd0xΛdd=Λdxd
86 71 23 84 85 syl3anc x+d1xxΛdd=Λdxd
87 86 oveq2d x+d1xΛdψxdxΛdd=ΛdψxdΛdxd
88 75 81 87 3eqtr4d x+d1xΛdRxd=ΛdψxdxΛdd
89 88 sumeq2dv x+d=1xΛdRxd=d=1xΛdψxdxΛdd
90 18 33 37 fsummulc2 x+xd=1xΛdd=d=1xxΛdd
91 90 oveq2d x+d=1xΛdψxdxd=1xΛdd=d=1xΛdψxdd=1xxΛdd
92 73 89 91 3eqtr4rd x+d=1xΛdψxdxd=1xΛdd=d=1xΛdRxd
93 92 oveq2d x+Rxlogx+d=1xΛdψxd-xd=1xΛdd=Rxlogx+d=1xΛdRxd
94 70 93 eqtrd x+Rxlogx+d=1xΛdψxd-xd=1xΛdd=Rxlogx+d=1xΛdRxd
95 94 oveq1d x+Rxlogx+d=1xΛdψxd-xd=1xΛddx=Rxlogx+d=1xΛdRxdx
96 38 33 34 divcan3d x+xd=1xΛddx=d=1xΛdd
97 96 oveq2d x+Rxlogx+d=1xΛdψxdxxd=1xΛddx=Rxlogx+d=1xΛdψxdxd=1xΛdd
98 69 95 97 3eqtr3rd x+Rxlogx+d=1xΛdψxdxd=1xΛdd=Rxlogx+d=1xΛdRxdx
99 39 66 98 3eqtr3d x+ψxlogx+d=1xΛdψxdx-2logx-d=1xΛddlogx=Rxlogx+d=1xΛdRxdx
100 99 mpteq2ia x+ψxlogx+d=1xΛdψxdx-2logx-d=1xΛddlogx=x+Rxlogx+d=1xΛdRxdx
101 11 100 eqtri x+ψxlogx+d=1xΛdψxdx2logxfx+d=1xΛddlogx=x+Rxlogx+d=1xΛdRxdx
102 selberg2 x+ψxlogx+d=1xΛdψxdx2logx𝑂1
103 vmadivsum x+d=1xΛddlogx𝑂1
104 o1sub x+ψxlogx+d=1xΛdψxdx2logx𝑂1x+d=1xΛddlogx𝑂1x+ψxlogx+d=1xΛdψxdx2logxfx+d=1xΛddlogx𝑂1
105 102 103 104 mp2an x+ψxlogx+d=1xΛdψxdx2logxfx+d=1xΛddlogx𝑂1
106 101 105 eqeltrri x+Rxlogx+d=1xΛdRxdx𝑂1