Metamath Proof Explorer


Theorem slerec

Description: A comparison law for surreals considered as cuts of sets of surreals. Definition from Conway p. 4. Theorem 4 of Alling p. 186. Theorem 2.5 of Gonshor p. 9. (Contributed by Scott Fenton, 11-Dec-2021)

Ref Expression
Assertion slerec AsBCsDX=A|sBY=C|sDXsYdDX<sdaAa<sY

Proof

Step Hyp Ref Expression
1 scutcl AsBA|sBNo
2 1 ad3antrrr AsBCsDA|sBsC|sDdDA|sBNo
3 scutcl CsDC|sDNo
4 3 ad3antlr AsBCsDA|sBsC|sDdDC|sDNo
5 ssltss2 CsDDNo
6 5 ad2antlr AsBCsDA|sBsC|sDDNo
7 6 sselda AsBCsDA|sBsC|sDdDdNo
8 simplr AsBCsDA|sBsC|sDdDA|sBsC|sD
9 scutcut CsDC|sDNoCsC|sDC|sDsD
10 9 simp3d CsDC|sDsD
11 10 ad2antlr AsBCsDA|sBsC|sDC|sDsD
12 ssltsep C|sDsDaC|sDdDa<sd
13 11 12 syl AsBCsDA|sBsC|sDaC|sDdDa<sd
14 ovex C|sDV
15 breq1 a=C|sDa<sdC|sD<sd
16 15 ralbidv a=C|sDdDa<sddDC|sD<sd
17 14 16 ralsn aC|sDdDa<sddDC|sD<sd
18 13 17 sylib AsBCsDA|sBsC|sDdDC|sD<sd
19 18 r19.21bi AsBCsDA|sBsC|sDdDC|sD<sd
20 2 4 7 8 19 slelttrd AsBCsDA|sBsC|sDdDA|sB<sd
21 20 ralrimiva AsBCsDA|sBsC|sDdDA|sB<sd
22 ssltss1 AsBANo
23 22 adantr AsBCsDANo
24 23 adantr AsBCsDA|sBsC|sDANo
25 24 sselda AsBCsDA|sBsC|sDaAaNo
26 1 ad3antrrr AsBCsDA|sBsC|sDaAA|sBNo
27 3 ad3antlr AsBCsDA|sBsC|sDaAC|sDNo
28 scutcut AsBA|sBNoAsA|sBA|sBsB
29 28 simp2d AsBAsA|sB
30 29 adantr AsBCsDAsA|sB
31 30 adantr AsBCsDA|sBsC|sDAsA|sB
32 ssltsep AsA|sBaAdA|sBa<sd
33 31 32 syl AsBCsDA|sBsC|sDaAdA|sBa<sd
34 33 r19.21bi AsBCsDA|sBsC|sDaAdA|sBa<sd
35 ovex A|sBV
36 breq2 d=A|sBa<sda<sA|sB
37 35 36 ralsn dA|sBa<sda<sA|sB
38 34 37 sylib AsBCsDA|sBsC|sDaAa<sA|sB
39 simplr AsBCsDA|sBsC|sDaAA|sBsC|sD
40 25 26 27 38 39 sltletrd AsBCsDA|sBsC|sDaAa<sC|sD
41 40 ralrimiva AsBCsDA|sBsC|sDaAa<sC|sD
42 21 41 jca AsBCsDA|sBsC|sDdDA|sB<sdaAa<sC|sD
43 bdayelon bdayA|sBOn
44 43 onordi OrdbdayA|sB
45 ordn2lp OrdbdayA|sB¬bdayA|sBbdayC|sDbdayC|sDbdayA|sB
46 44 45 ax-mp ¬bdayA|sBbdayC|sDbdayC|sDbdayA|sB
47 3 ad2antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sDNo
48 1 adantr AsBCsDA|sBNo
49 48 adantr AsBCsDdDA|sB<sdaAa<sC|sDA|sBNo
50 sltnle C|sDNoA|sBNoC|sD<sA|sB¬A|sBsC|sD
51 47 49 50 syl2anc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sB¬A|sBsC|sD
52 3 ad3antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBC|sDNo
53 ssltex1 AsBAV
54 53 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBAV
55 snex C|sDV
56 54 55 jctir AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBAVC|sDV
57 22 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBANo
58 52 snssd AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBC|sDNo
59 simplrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBaAa<sC|sD
60 breq2 d=C|sDa<sda<sC|sD
61 14 60 ralsn dC|sDa<sda<sC|sD
62 61 ralbii aAdC|sDa<sdaAa<sC|sD
63 59 62 sylibr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBaAdC|sDa<sd
64 57 58 63 3jca AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBANoC|sDNoaAdC|sDa<sd
65 brsslt AsC|sDAVC|sDVANoC|sDNoaAdC|sDa<sd
66 56 64 65 sylanbrc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBAsC|sD
67 ssltex2 AsBBV
68 67 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBBV
69 68 55 jctil AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBC|sDVBV
70 ssltss2 AsBBNo
71 70 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBBNo
72 52 adantr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBC|sDNo
73 48 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBA|sBNo
74 71 sselda AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBbNo
75 simplr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBC|sD<sA|sB
76 28 simp3d AsBA|sBsB
77 76 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBsB
78 ssltsep A|sBsBaA|sBbBa<sb
79 77 78 syl AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBaA|sBbBa<sb
80 breq1 a=A|sBa<sbA|sB<sb
81 80 ralbidv a=A|sBbBa<sbbBA|sB<sb
82 35 81 ralsn aA|sBbBa<sbbBA|sB<sb
83 79 82 sylib AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBA|sB<sb
84 83 r19.21bi AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBA|sB<sb
85 72 73 74 75 84 slttrd AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBC|sD<sb
86 85 ralrimiva AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbBC|sD<sb
87 breq1 a=C|sDa<sbC|sD<sb
88 87 ralbidv a=C|sDbBa<sbbBC|sD<sb
89 14 88 ralsn aC|sDbBa<sbbBC|sD<sb
90 86 89 sylibr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBaC|sDbBa<sb
91 58 71 90 3jca AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBC|sDNoBNoaC|sDbBa<sb
92 brsslt C|sDsBC|sDVBVC|sDNoBNoaC|sDbBa<sb
93 69 91 92 sylanbrc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBC|sDsB
94 sltirr A|sBNo¬A|sB<sA|sB
95 49 94 syl AsBCsDdDA|sB<sdaAa<sC|sD¬A|sB<sA|sB
96 breq1 A|sB=C|sDA|sB<sA|sBC|sD<sA|sB
97 96 notbid A|sB=C|sD¬A|sB<sA|sB¬C|sD<sA|sB
98 95 97 syl5ibcom AsBCsDdDA|sB<sdaAa<sC|sDA|sB=C|sD¬C|sD<sA|sB
99 98 necon2ad AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBC|sD
100 99 imp AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBC|sD
101 100 necomd AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBC|sDA|sB
102 scutbdaylt C|sDNoAsC|sDC|sDsBC|sDA|sBbdayA|sBbdayC|sD
103 52 66 93 101 102 syl121anc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbdayA|sBbdayC|sD
104 1 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBNo
105 ssltex1 CsDCV
106 105 ad3antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBCV
107 snex A|sBV
108 106 107 jctir AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBCVA|sBV
109 ssltss1 CsDCNo
110 109 ad3antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBCNo
111 104 snssd AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBNo
112 110 sselda AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCcNo
113 52 adantr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCC|sDNo
114 48 ad3antrrr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCA|sBNo
115 9 simp2d CsDCsC|sD
116 115 ad3antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBCsC|sD
117 ssltsep CsC|sDcCdC|sDc<sd
118 116 117 syl AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCdC|sDc<sd
119 118 r19.21bi AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCdC|sDc<sd
120 breq2 d=C|sDc<sdc<sC|sD
121 14 120 ralsn dC|sDc<sdc<sC|sD
122 119 121 sylib AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCc<sC|sD
123 simplr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCC|sD<sA|sB
124 112 113 114 122 123 slttrd AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCc<sA|sB
125 breq2 a=A|sBc<sac<sA|sB
126 35 125 ralsn aA|sBc<sac<sA|sB
127 124 126 sylibr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCaA|sBc<sa
128 127 ralrimiva AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBcCaA|sBc<sa
129 110 111 128 3jca AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBCNoA|sBNocCaA|sBc<sa
130 brsslt CsA|sBCVA|sBVCNoA|sBNocCaA|sBc<sa
131 108 129 130 sylanbrc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBCsA|sB
132 ssltex2 CsDDV
133 132 ad3antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBDV
134 133 107 jctil AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBVDV
135 5 ad3antlr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBDNo
136 simplrl AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBdDA|sB<sd
137 breq1 a=A|sBa<sdA|sB<sd
138 137 ralbidv a=A|sBdDa<sddDA|sB<sd
139 35 138 ralsn aA|sBdDa<sddDA|sB<sd
140 136 139 sylibr AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBaA|sBdDa<sd
141 111 135 140 3jca AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBNoDNoaA|sBdDa<sd
142 brsslt A|sBsDA|sBVDVA|sBNoDNoaA|sBdDa<sd
143 134 141 142 sylanbrc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBA|sBsD
144 scutbdaylt A|sBNoCsA|sBA|sBsDA|sBC|sDbdayC|sDbdayA|sB
145 104 131 143 100 144 syl121anc AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbdayC|sDbdayA|sB
146 103 145 jca AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbdayA|sBbdayC|sDbdayC|sDbdayA|sB
147 146 ex AsBCsDdDA|sB<sdaAa<sC|sDC|sD<sA|sBbdayA|sBbdayC|sDbdayC|sDbdayA|sB
148 51 147 sylbird AsBCsDdDA|sB<sdaAa<sC|sD¬A|sBsC|sDbdayA|sBbdayC|sDbdayC|sDbdayA|sB
149 46 148 mt3i AsBCsDdDA|sB<sdaAa<sC|sDA|sBsC|sD
150 42 149 impbida AsBCsDA|sBsC|sDdDA|sB<sdaAa<sC|sD
151 breq12 X=A|sBY=C|sDXsYA|sBsC|sD
152 breq1 X=A|sBX<sdA|sB<sd
153 152 ralbidv X=A|sBdDX<sddDA|sB<sd
154 breq2 Y=C|sDa<sYa<sC|sD
155 154 ralbidv Y=C|sDaAa<sYaAa<sC|sD
156 153 155 bi2anan9 X=A|sBY=C|sDdDX<sdaAa<sYdDA|sB<sdaAa<sC|sD
157 151 156 bibi12d X=A|sBY=C|sDXsYdDX<sdaAa<sYA|sBsC|sDdDA|sB<sdaAa<sC|sD
158 150 157 imbitrrid X=A|sBY=C|sDAsBCsDXsYdDX<sdaAa<sY
159 158 impcom AsBCsDX=A|sBY=C|sDXsYdDX<sdaAa<sY