Metamath Proof Explorer


Theorem smflimsuplem8

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem8.m φ M
smflimsuplem8.z Z = M
smflimsuplem8.s φ S SAlg
smflimsuplem8.f φ F : Z SMblFn S
smflimsuplem8.d D = x n Z m n dom F m | lim sup m Z F m x
smflimsuplem8.g G = x D lim sup m Z F m x
smflimsuplem8.e E = k Z x m k dom F m | sup ran m k F m x * <
smflimsuplem8.h H = k Z x E k sup ran m k F m x * <
Assertion smflimsuplem8 φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smflimsuplem8.m φ M
2 smflimsuplem8.z Z = M
3 smflimsuplem8.s φ S SAlg
4 smflimsuplem8.f φ F : Z SMblFn S
5 smflimsuplem8.d D = x n Z m n dom F m | lim sup m Z F m x
6 smflimsuplem8.g G = x D lim sup m Z F m x
7 smflimsuplem8.e E = k Z x m k dom F m | sup ran m k F m x * <
8 smflimsuplem8.h H = k Z x E k sup ran m k F m x * <
9 6 a1i φ G = x D lim sup m Z F m x
10 1 2 3 4 5 7 8 smflimsuplem7 φ D = x n Z k n dom H k | k Z H k x dom
11 rabidim1 x x n Z m n dom F m | lim sup m Z F m x x n Z m n dom F m
12 eliun x n Z m n dom F m n Z x m n dom F m
13 11 12 sylib x x n Z m n dom F m | lim sup m Z F m x n Z x m n dom F m
14 13 5 eleq2s x D n Z x m n dom F m
15 14 adantl φ x D n Z x m n dom F m
16 nfv n φ x D
17 nfv n lim sup m Z F m x = k Z H k x
18 nfv k φ x D n Z x m n dom F m
19 nfv m φ x D
20 nfv m n Z
21 nfcv _ m x
22 nfii1 _ m m n dom F m
23 21 22 nfel m x m n dom F m
24 19 20 23 nf3an m φ x D n Z x m n dom F m
25 1 adantr φ x D M
26 25 3ad2ant1 φ x D n Z x m n dom F m M
27 3 adantr φ x D S SAlg
28 27 3ad2ant1 φ x D n Z x m n dom F m S SAlg
29 4 adantr φ x D F : Z SMblFn S
30 29 3ad2ant1 φ x D n Z x m n dom F m F : Z SMblFn S
31 rabidim2 x x n Z m n dom F m | lim sup m Z F m x lim sup m Z F m x
32 31 5 eleq2s x D lim sup m Z F m x
33 fveq2 m = y F m = F y
34 33 fveq1d m = y F m x = F y x
35 34 cbvmptv m Z F m x = y Z F y x
36 fveq2 z = y F z = F y
37 36 fveq1d z = y F z x = F y x
38 37 cbvmptv z Z F z x = y Z F y x
39 fveq2 z = w F z = F w
40 39 fveq1d z = w F z x = F w x
41 40 cbvmptv z Z F z x = w Z F w x
42 35 38 41 3eqtr2i m Z F m x = w Z F w x
43 42 fveq2i lim sup m Z F m x = lim sup w Z F w x
44 43 eleq1i lim sup m Z F m x lim sup w Z F w x
45 32 44 sylib x D lim sup w Z F w x
46 45 adantl φ x D lim sup w Z F w x
47 46 3ad2ant1 φ x D n Z x m n dom F m lim sup w Z F w x
48 47 44 sylibr φ x D n Z x m n dom F m lim sup m Z F m x
49 simp2 φ x D n Z x m n dom F m n Z
50 simp3 φ x D n Z x m n dom F m x m n dom F m
51 18 24 26 2 28 30 7 8 48 49 50 smflimsuplem5 φ x D n Z x m n dom F m k n H k x lim sup m n F m x
52 fvexd φ x D n Z x m n dom F m n V
53 2 fvexi Z V
54 53 a1i φ x D n Z x m n dom F m Z V
55 2 49 eluzelz2d φ x D n Z x m n dom F m n
56 eqid n = n
57 55 uzidd φ x D n Z x m n dom F m n n
58 57 uzssd φ x D n Z x m n dom F m n n
59 2 49 uzssd2 φ x D n Z x m n dom F m n Z
60 fvexd φ x D n Z x m n dom F m k n H k x V
61 18 52 54 55 56 58 59 60 climeqmpt φ x D n Z x m n dom F m k n H k x lim sup m n F m x k Z H k x lim sup m n F m x
62 51 61 mpbid φ x D n Z x m n dom F m k Z H k x lim sup m n F m x
63 simp1l φ x D n Z x m n dom F m φ
64 nfv m φ
65 64 20 nfan m φ n Z
66 2 eluzelz2 n Z n
67 66 adantl φ n Z n
68 1 adantr φ n Z M
69 fvexd φ n Z m n F m x V
70 fvexd φ n Z m Z F m x V
71 65 67 68 56 2 69 70 limsupequzmpt φ n Z lim sup m n F m x = lim sup m Z F m x
72 63 49 71 syl2anc φ x D n Z x m n dom F m lim sup m n F m x = lim sup m Z F m x
73 62 72 breqtrd φ x D n Z x m n dom F m k Z H k x lim sup m Z F m x
74 73 climfvd φ x D n Z x m n dom F m lim sup m Z F m x = k Z H k x
75 74 3exp φ x D n Z x m n dom F m lim sup m Z F m x = k Z H k x
76 16 17 75 rexlimd φ x D n Z x m n dom F m lim sup m Z F m x = k Z H k x
77 15 76 mpd φ x D lim sup m Z F m x = k Z H k x
78 10 77 mpteq12dva φ x D lim sup m Z F m x = x x n Z k n dom H k | k Z H k x dom k Z H k x
79 9 78 eqtrd φ G = x x n Z k n dom H k | k Z H k x dom k Z H k x
80 1 2 3 4 7 8 smflimsuplem3 φ x x n Z k n dom H k | k Z H k x dom k Z H k x SMblFn S
81 79 80 eqeltrd φ G SMblFn S