Metamath Proof Explorer


Theorem smflimsuplem8

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem8.m φM
smflimsuplem8.z Z=M
smflimsuplem8.s φSSAlg
smflimsuplem8.f φF:ZSMblFnS
smflimsuplem8.d D=xnZmndomFm|lim supmZFmx
smflimsuplem8.g G=xDlim supmZFmx
smflimsuplem8.e E=kZxmkdomFm|supranmkFmx*<
smflimsuplem8.h H=kZxEksupranmkFmx*<
Assertion smflimsuplem8 φGSMblFnS

Proof

Step Hyp Ref Expression
1 smflimsuplem8.m φM
2 smflimsuplem8.z Z=M
3 smflimsuplem8.s φSSAlg
4 smflimsuplem8.f φF:ZSMblFnS
5 smflimsuplem8.d D=xnZmndomFm|lim supmZFmx
6 smflimsuplem8.g G=xDlim supmZFmx
7 smflimsuplem8.e E=kZxmkdomFm|supranmkFmx*<
8 smflimsuplem8.h H=kZxEksupranmkFmx*<
9 6 a1i φG=xDlim supmZFmx
10 1 2 3 4 5 7 8 smflimsuplem7 φD=xnZkndomHk|kZHkxdom
11 rabidim1 xxnZmndomFm|lim supmZFmxxnZmndomFm
12 eliun xnZmndomFmnZxmndomFm
13 11 12 sylib xxnZmndomFm|lim supmZFmxnZxmndomFm
14 13 5 eleq2s xDnZxmndomFm
15 14 adantl φxDnZxmndomFm
16 nfv nφxD
17 nfv nlim supmZFmx=kZHkx
18 nfv kφxDnZxmndomFm
19 nfv mφxD
20 nfv mnZ
21 nfcv _mx
22 nfii1 _mmndomFm
23 21 22 nfel mxmndomFm
24 19 20 23 nf3an mφxDnZxmndomFm
25 1 adantr φxDM
26 25 3ad2ant1 φxDnZxmndomFmM
27 3 adantr φxDSSAlg
28 27 3ad2ant1 φxDnZxmndomFmSSAlg
29 4 adantr φxDF:ZSMblFnS
30 29 3ad2ant1 φxDnZxmndomFmF:ZSMblFnS
31 rabidim2 xxnZmndomFm|lim supmZFmxlim supmZFmx
32 31 5 eleq2s xDlim supmZFmx
33 fveq2 m=yFm=Fy
34 33 fveq1d m=yFmx=Fyx
35 34 cbvmptv mZFmx=yZFyx
36 fveq2 z=yFz=Fy
37 36 fveq1d z=yFzx=Fyx
38 37 cbvmptv zZFzx=yZFyx
39 fveq2 z=wFz=Fw
40 39 fveq1d z=wFzx=Fwx
41 40 cbvmptv zZFzx=wZFwx
42 35 38 41 3eqtr2i mZFmx=wZFwx
43 42 fveq2i lim supmZFmx=lim supwZFwx
44 43 eleq1i lim supmZFmxlim supwZFwx
45 32 44 sylib xDlim supwZFwx
46 45 adantl φxDlim supwZFwx
47 46 3ad2ant1 φxDnZxmndomFmlim supwZFwx
48 47 44 sylibr φxDnZxmndomFmlim supmZFmx
49 simp2 φxDnZxmndomFmnZ
50 simp3 φxDnZxmndomFmxmndomFm
51 18 24 26 2 28 30 7 8 48 49 50 smflimsuplem5 φxDnZxmndomFmknHkxlim supmnFmx
52 fvexd φxDnZxmndomFmnV
53 2 fvexi ZV
54 53 a1i φxDnZxmndomFmZV
55 2 49 eluzelz2d φxDnZxmndomFmn
56 eqid n=n
57 55 uzidd φxDnZxmndomFmnn
58 57 uzssd φxDnZxmndomFmnn
59 2 49 uzssd2 φxDnZxmndomFmnZ
60 fvexd φxDnZxmndomFmknHkxV
61 18 52 54 55 56 58 59 60 climeqmpt φxDnZxmndomFmknHkxlim supmnFmxkZHkxlim supmnFmx
62 51 61 mpbid φxDnZxmndomFmkZHkxlim supmnFmx
63 simp1l φxDnZxmndomFmφ
64 nfv mφ
65 64 20 nfan mφnZ
66 2 eluzelz2 nZn
67 66 adantl φnZn
68 1 adantr φnZM
69 fvexd φnZmnFmxV
70 fvexd φnZmZFmxV
71 65 67 68 56 2 69 70 limsupequzmpt φnZlim supmnFmx=lim supmZFmx
72 63 49 71 syl2anc φxDnZxmndomFmlim supmnFmx=lim supmZFmx
73 62 72 breqtrd φxDnZxmndomFmkZHkxlim supmZFmx
74 73 climfvd φxDnZxmndomFmlim supmZFmx=kZHkx
75 74 3exp φxDnZxmndomFmlim supmZFmx=kZHkx
76 16 17 75 rexlimd φxDnZxmndomFmlim supmZFmx=kZHkx
77 15 76 mpd φxDlim supmZFmx=kZHkx
78 10 77 mpteq12dva φxDlim supmZFmx=xxnZkndomHk|kZHkxdomkZHkx
79 9 78 eqtrd φG=xxnZkndomHk|kZHkxdomkZHkx
80 1 2 3 4 7 8 smflimsuplem3 φxxnZkndomHk|kZHkxdomkZHkxSMblFnS
81 79 80 eqeltrd φGSMblFnS