Step |
Hyp |
Ref |
Expression |
1 |
|
smflimsuplem8.m |
|
2 |
|
smflimsuplem8.z |
|
3 |
|
smflimsuplem8.s |
|
4 |
|
smflimsuplem8.f |
|
5 |
|
smflimsuplem8.d |
|
6 |
|
smflimsuplem8.g |
|
7 |
|
smflimsuplem8.e |
|
8 |
|
smflimsuplem8.h |
|
9 |
6
|
a1i |
|
10 |
1 2 3 4 5 7 8
|
smflimsuplem7 |
|
11 |
|
rabidim1 |
|
12 |
|
eliun |
|
13 |
11 12
|
sylib |
|
14 |
13 5
|
eleq2s |
|
15 |
14
|
adantl |
|
16 |
|
nfv |
|
17 |
|
nfv |
|
18 |
|
nfv |
|
19 |
|
nfv |
|
20 |
|
nfv |
|
21 |
|
nfcv |
|
22 |
|
nfii1 |
|
23 |
21 22
|
nfel |
|
24 |
19 20 23
|
nf3an |
|
25 |
1
|
adantr |
|
26 |
25
|
3ad2ant1 |
|
27 |
3
|
adantr |
|
28 |
27
|
3ad2ant1 |
|
29 |
4
|
adantr |
|
30 |
29
|
3ad2ant1 |
|
31 |
|
rabidim2 |
|
32 |
31 5
|
eleq2s |
|
33 |
|
fveq2 |
|
34 |
33
|
fveq1d |
|
35 |
34
|
cbvmptv |
|
36 |
|
fveq2 |
|
37 |
36
|
fveq1d |
|
38 |
37
|
cbvmptv |
|
39 |
|
fveq2 |
|
40 |
39
|
fveq1d |
|
41 |
40
|
cbvmptv |
|
42 |
35 38 41
|
3eqtr2i |
|
43 |
42
|
fveq2i |
|
44 |
43
|
eleq1i |
|
45 |
32 44
|
sylib |
|
46 |
45
|
adantl |
|
47 |
46
|
3ad2ant1 |
|
48 |
47 44
|
sylibr |
|
49 |
|
simp2 |
|
50 |
|
simp3 |
|
51 |
18 24 26 2 28 30 7 8 48 49 50
|
smflimsuplem5 |
|
52 |
|
fvexd |
|
53 |
2
|
fvexi |
|
54 |
53
|
a1i |
|
55 |
2 49
|
eluzelz2d |
|
56 |
|
eqid |
|
57 |
55
|
uzidd |
|
58 |
57
|
uzssd |
|
59 |
2 49
|
uzssd2 |
|
60 |
|
fvexd |
|
61 |
18 52 54 55 56 58 59 60
|
climeqmpt |
|
62 |
51 61
|
mpbid |
|
63 |
|
simp1l |
|
64 |
|
nfv |
|
65 |
64 20
|
nfan |
|
66 |
2
|
eluzelz2 |
|
67 |
66
|
adantl |
|
68 |
1
|
adantr |
|
69 |
|
fvexd |
|
70 |
|
fvexd |
|
71 |
65 67 68 56 2 69 70
|
limsupequzmpt |
|
72 |
63 49 71
|
syl2anc |
|
73 |
62 72
|
breqtrd |
|
74 |
73
|
climfvd |
|
75 |
74
|
3exp |
|
76 |
16 17 75
|
rexlimd |
|
77 |
15 76
|
mpd |
|
78 |
10 77
|
mpteq12dva |
|
79 |
9 78
|
eqtrd |
|
80 |
1 2 3 4 7 8
|
smflimsuplem3 |
|
81 |
79 80
|
eqeltrd |
|