Metamath Proof Explorer


Theorem smuval2

Description: The partial sum sequence stabilizes at N after the N + 1 -th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φA0
smuval.b φB0
smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
smuval.n φN0
smuval2.m φMN+1
Assertion smuval2 φNAsmulBNPM

Proof

Step Hyp Ref Expression
1 smuval.a φA0
2 smuval.b φB0
3 smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 smuval.n φN0
5 smuval2.m φMN+1
6 fveq2 x=N+1Px=PN+1
7 6 eleq2d x=N+1NPxNPN+1
8 7 bibi2d x=N+1NAsmulBNPxNAsmulBNPN+1
9 8 imbi2d x=N+1φNAsmulBNPxφNAsmulBNPN+1
10 fveq2 x=kPx=Pk
11 10 eleq2d x=kNPxNPk
12 11 bibi2d x=kNAsmulBNPxNAsmulBNPk
13 12 imbi2d x=kφNAsmulBNPxφNAsmulBNPk
14 fveq2 x=k+1Px=Pk+1
15 14 eleq2d x=k+1NPxNPk+1
16 15 bibi2d x=k+1NAsmulBNPxNAsmulBNPk+1
17 16 imbi2d x=k+1φNAsmulBNPxφNAsmulBNPk+1
18 fveq2 x=MPx=PM
19 18 eleq2d x=MNPxNPM
20 19 bibi2d x=MNAsmulBNPxNAsmulBNPM
21 20 imbi2d x=MφNAsmulBNPxφNAsmulBNPM
22 1 2 3 4 smuval φNAsmulBNPN+1
23 1 adantr φkN+1A0
24 2 adantr φkN+1B0
25 peano2nn0 N0N+10
26 4 25 syl φN+10
27 eluznn0 N+10kN+1k0
28 26 27 sylan φkN+1k0
29 23 24 3 28 smupp1 φkN+1Pk+1=Pksaddn0|kAnkB
30 29 eleq2d φkN+1NPk+1NPksaddn0|kAnkB
31 23 24 3 smupf φkN+1P:0𝒫0
32 31 28 ffvelcdmd φkN+1Pk𝒫0
33 32 elpwid φkN+1Pk0
34 ssrab2 n0|kAnkB0
35 34 a1i φkN+1n0|kAnkB0
36 26 adantr φkN+1N+10
37 33 35 36 sadeq φkN+1Pksaddn0|kAnkB0..^N+1=Pk0..^N+1saddn0|kAnkB0..^N+10..^N+1
38 inrab2 n0|kAnkB0..^N+1=n00..^N+1|kAnkB
39 simpr φkN+1n00..^N+1n00..^N+1
40 39 elin1d φkN+1n00..^N+1n0
41 40 nn0red φkN+1n00..^N+1n
42 4 adantr φkN+1N0
43 42 adantr φkN+1n00..^N+1N0
44 43 nn0red φkN+1n00..^N+1N
45 1red φkN+1n00..^N+11
46 44 45 readdcld φkN+1n00..^N+1N+1
47 28 adantr φkN+1n00..^N+1k0
48 47 nn0red φkN+1n00..^N+1k
49 39 elin2d φkN+1n00..^N+1n0..^N+1
50 elfzolt2 n0..^N+1n<N+1
51 49 50 syl φkN+1n00..^N+1n<N+1
52 eluzle kN+1N+1k
53 52 ad2antlr φkN+1n00..^N+1N+1k
54 41 46 48 51 53 ltletrd φkN+1n00..^N+1n<k
55 41 48 ltnled φkN+1n00..^N+1n<k¬kn
56 54 55 mpbid φkN+1n00..^N+1¬kn
57 24 adantr φkN+1n00..^N+1B0
58 57 sseld φkN+1n00..^N+1nkBnk0
59 nn0ge0 nk00nk
60 58 59 syl6 φkN+1n00..^N+1nkB0nk
61 41 48 subge0d φkN+1n00..^N+10nkkn
62 60 61 sylibd φkN+1n00..^N+1nkBkn
63 62 adantld φkN+1n00..^N+1kAnkBkn
64 56 63 mtod φkN+1n00..^N+1¬kAnkB
65 64 ralrimiva φkN+1n00..^N+1¬kAnkB
66 rabeq0 n00..^N+1|kAnkB=n00..^N+1¬kAnkB
67 65 66 sylibr φkN+1n00..^N+1|kAnkB=
68 38 67 eqtrid φkN+1n0|kAnkB0..^N+1=
69 68 oveq2d φkN+1Pk0..^N+1saddn0|kAnkB0..^N+1=Pk0..^N+1sadd
70 inss1 Pk0..^N+1Pk
71 70 33 sstrid φkN+1Pk0..^N+10
72 sadid1 Pk0..^N+10Pk0..^N+1sadd=Pk0..^N+1
73 71 72 syl φkN+1Pk0..^N+1sadd=Pk0..^N+1
74 69 73 eqtrd φkN+1Pk0..^N+1saddn0|kAnkB0..^N+1=Pk0..^N+1
75 74 ineq1d φkN+1Pk0..^N+1saddn0|kAnkB0..^N+10..^N+1=Pk0..^N+10..^N+1
76 inass Pk0..^N+10..^N+1=Pk0..^N+10..^N+1
77 inidm 0..^N+10..^N+1=0..^N+1
78 77 ineq2i Pk0..^N+10..^N+1=Pk0..^N+1
79 76 78 eqtri Pk0..^N+10..^N+1=Pk0..^N+1
80 75 79 eqtrdi φkN+1Pk0..^N+1saddn0|kAnkB0..^N+10..^N+1=Pk0..^N+1
81 37 80 eqtrd φkN+1Pksaddn0|kAnkB0..^N+1=Pk0..^N+1
82 81 eleq2d φkN+1NPksaddn0|kAnkB0..^N+1NPk0..^N+1
83 elin NPksaddn0|kAnkB0..^N+1NPksaddn0|kAnkBN0..^N+1
84 elin NPk0..^N+1NPkN0..^N+1
85 82 83 84 3bitr3g φkN+1NPksaddn0|kAnkBN0..^N+1NPkN0..^N+1
86 nn0uz 0=0
87 42 86 eleqtrdi φkN+1N0
88 eluzfz2 N0N0N
89 87 88 syl φkN+1N0N
90 42 nn0zd φkN+1N
91 fzval3 N0N=0..^N+1
92 90 91 syl φkN+10N=0..^N+1
93 89 92 eleqtrd φkN+1N0..^N+1
94 93 biantrud φkN+1NPksaddn0|kAnkBNPksaddn0|kAnkBN0..^N+1
95 93 biantrud φkN+1NPkNPkN0..^N+1
96 85 94 95 3bitr4d φkN+1NPksaddn0|kAnkBNPk
97 30 96 bitrd φkN+1NPk+1NPk
98 97 bibi2d φkN+1NAsmulBNPk+1NAsmulBNPk
99 98 biimprd φkN+1NAsmulBNPkNAsmulBNPk+1
100 99 expcom kN+1φNAsmulBNPkNAsmulBNPk+1
101 100 a2d kN+1φNAsmulBNPkφNAsmulBNPk+1
102 9 13 17 21 22 101 uzind4i MN+1φNAsmulBNPM
103 5 102 mpcom φNAsmulBNPM