| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submateq.a |
|
| 2 |
|
submateq.b |
|
| 3 |
|
submateq.n |
|
| 4 |
|
submateq.i |
|
| 5 |
|
submateq.j |
|
| 6 |
|
submateq.e |
|
| 7 |
|
submateq.f |
|
| 8 |
|
submateq.1 |
|
| 9 |
|
simprl |
|
| 10 |
3
|
ad2antrr |
|
| 11 |
4
|
ad2antrr |
|
| 12 |
|
simplr |
|
| 13 |
|
simpr |
|
| 14 |
10 11 12 13
|
submateqlem1 |
|
| 15 |
14
|
simprd |
|
| 16 |
9 15
|
syldanl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simprr |
|
| 19 |
3
|
ad2antrr |
|
| 20 |
5
|
ad2antrr |
|
| 21 |
|
simplr |
|
| 22 |
|
simpr |
|
| 23 |
19 20 21 22
|
submateqlem1 |
|
| 24 |
23
|
simprd |
|
| 25 |
18 24
|
syldanl |
|
| 26 |
25
|
adantlr |
|
| 27 |
17 26
|
jca |
|
| 28 |
|
ovexd |
|
| 29 |
|
ovexd |
|
| 30 |
|
simpl |
|
| 31 |
30
|
eleq1d |
|
| 32 |
|
simpr |
|
| 33 |
32
|
eleq1d |
|
| 34 |
31 33
|
anbi12d |
|
| 35 |
|
oveq12 |
|
| 36 |
|
oveq12 |
|
| 37 |
35 36
|
eqeq12d |
|
| 38 |
34 37
|
imbi12d |
|
| 39 |
8
|
3expib |
|
| 40 |
28 29 38 39
|
vtocl2d |
|
| 41 |
40
|
ad3antrrr |
|
| 42 |
27 41
|
mpd |
|
| 43 |
|
eqid |
|
| 44 |
3
|
ad3antrrr |
|
| 45 |
4
|
ad3antrrr |
|
| 46 |
5
|
ad3antrrr |
|
| 47 |
|
eqid |
|
| 48 |
1 47 2
|
matbas2i |
|
| 49 |
6 48
|
syl |
|
| 50 |
49
|
ad3antrrr |
|
| 51 |
14
|
simpld |
|
| 52 |
9 51
|
syldanl |
|
| 53 |
52
|
adantr |
|
| 54 |
23
|
simpld |
|
| 55 |
18 54
|
syldanl |
|
| 56 |
55
|
adantlr |
|
| 57 |
43 44 44 45 46 50 53 56
|
smatbr |
|
| 58 |
|
eqid |
|
| 59 |
1 47 2
|
matbas2i |
|
| 60 |
7 59
|
syl |
|
| 61 |
60
|
ad3antrrr |
|
| 62 |
58 44 44 45 46 61 53 56
|
smatbr |
|
| 63 |
42 57 62
|
3eqtr4d |
|
| 64 |
16
|
adantr |
|
| 65 |
3
|
ad2antrr |
|
| 66 |
5
|
ad2antrr |
|
| 67 |
|
simplr |
|
| 68 |
|
simpr |
|
| 69 |
65 66 67 68
|
submateqlem2 |
|
| 70 |
69
|
simprd |
|
| 71 |
18 70
|
syldanl |
|
| 72 |
71
|
adantlr |
|
| 73 |
64 72
|
jca |
|
| 74 |
|
vex |
|
| 75 |
74
|
a1i |
|
| 76 |
|
simpl |
|
| 77 |
76
|
eleq1d |
|
| 78 |
|
simpr |
|
| 79 |
|
eqidd |
|
| 80 |
78 79
|
eleq12d |
|
| 81 |
77 80
|
anbi12d |
|
| 82 |
|
oveq12 |
|
| 83 |
|
oveq12 |
|
| 84 |
82 83
|
eqeq12d |
|
| 85 |
81 84
|
imbi12d |
|
| 86 |
28 75 85 39
|
vtocl2d |
|
| 87 |
86
|
ad3antrrr |
|
| 88 |
73 87
|
mpd |
|
| 89 |
3
|
ad3antrrr |
|
| 90 |
4
|
ad3antrrr |
|
| 91 |
5
|
ad3antrrr |
|
| 92 |
49
|
ad3antrrr |
|
| 93 |
52
|
adantr |
|
| 94 |
69
|
simpld |
|
| 95 |
18 94
|
syldanl |
|
| 96 |
95
|
adantlr |
|
| 97 |
43 89 89 90 91 92 93 96
|
smattr |
|
| 98 |
60
|
ad3antrrr |
|
| 99 |
58 89 89 90 91 98 93 96
|
smattr |
|
| 100 |
88 97 99
|
3eqtr4d |
|
| 101 |
|
fz1ssnn |
|
| 102 |
101 5
|
sselid |
|
| 103 |
102
|
nnred |
|
| 104 |
103
|
adantr |
|
| 105 |
|
fz1ssnn |
|
| 106 |
105 18
|
sselid |
|
| 107 |
106
|
nnred |
|
| 108 |
|
lelttric |
|
| 109 |
104 107 108
|
syl2anc |
|
| 110 |
109
|
adantr |
|
| 111 |
63 100 110
|
mpjaodan |
|
| 112 |
3
|
ad2antrr |
|
| 113 |
4
|
ad2antrr |
|
| 114 |
|
simplr |
|
| 115 |
|
simpr |
|
| 116 |
112 113 114 115
|
submateqlem2 |
|
| 117 |
116
|
simprd |
|
| 118 |
9 117
|
syldanl |
|
| 119 |
118
|
adantr |
|
| 120 |
25
|
adantlr |
|
| 121 |
119 120
|
jca |
|
| 122 |
|
vex |
|
| 123 |
122
|
a1i |
|
| 124 |
|
simpl |
|
| 125 |
124
|
eleq1d |
|
| 126 |
|
simpr |
|
| 127 |
126
|
eleq1d |
|
| 128 |
125 127
|
anbi12d |
|
| 129 |
|
oveq12 |
|
| 130 |
|
oveq12 |
|
| 131 |
129 130
|
eqeq12d |
|
| 132 |
128 131
|
imbi12d |
|
| 133 |
123 29 132 39
|
vtocl2d |
|
| 134 |
133
|
ad3antrrr |
|
| 135 |
121 134
|
mpd |
|
| 136 |
3
|
ad3antrrr |
|
| 137 |
4
|
ad3antrrr |
|
| 138 |
5
|
ad3antrrr |
|
| 139 |
49
|
ad3antrrr |
|
| 140 |
116
|
simpld |
|
| 141 |
9 140
|
syldanl |
|
| 142 |
141
|
adantr |
|
| 143 |
55
|
adantlr |
|
| 144 |
43 136 136 137 138 139 142 143
|
smatbl |
|
| 145 |
60
|
ad3antrrr |
|
| 146 |
58 136 136 137 138 145 142 143
|
smatbl |
|
| 147 |
135 144 146
|
3eqtr4d |
|
| 148 |
118
|
adantr |
|
| 149 |
71
|
adantlr |
|
| 150 |
148 149
|
jca |
|
| 151 |
|
simpl |
|
| 152 |
151
|
eleq1d |
|
| 153 |
|
simpr |
|
| 154 |
153
|
eleq1d |
|
| 155 |
152 154
|
anbi12d |
|
| 156 |
|
oveq12 |
|
| 157 |
|
oveq12 |
|
| 158 |
156 157
|
eqeq12d |
|
| 159 |
155 158
|
imbi12d |
|
| 160 |
123 75 159 39
|
vtocl2d |
|
| 161 |
160
|
ad3antrrr |
|
| 162 |
150 161
|
mpd |
|
| 163 |
3
|
ad3antrrr |
|
| 164 |
4
|
ad3antrrr |
|
| 165 |
5
|
ad3antrrr |
|
| 166 |
49
|
ad3antrrr |
|
| 167 |
141
|
adantr |
|
| 168 |
95
|
adantlr |
|
| 169 |
43 163 163 164 165 166 167 168
|
smattl |
|
| 170 |
60
|
ad3antrrr |
|
| 171 |
58 163 163 164 165 170 167 168
|
smattl |
|
| 172 |
162 169 171
|
3eqtr4d |
|
| 173 |
109
|
adantr |
|
| 174 |
147 172 173
|
mpjaodan |
|
| 175 |
101 4
|
sselid |
|
| 176 |
175
|
nnred |
|
| 177 |
176
|
adantr |
|
| 178 |
105 9
|
sselid |
|
| 179 |
178
|
nnred |
|
| 180 |
|
lelttric |
|
| 181 |
177 179 180
|
syl2anc |
|
| 182 |
111 174 181
|
mpjaodan |
|
| 183 |
182
|
ralrimivva |
|
| 184 |
|
eqid |
|
| 185 |
1 2 184 43 3 4 5 6
|
smatcl |
|
| 186 |
1 2 184 58 3 4 5 7
|
smatcl |
|
| 187 |
|
eqid |
|
| 188 |
187 184
|
eqmat |
|
| 189 |
185 186 188
|
syl2anc |
|
| 190 |
183 189
|
mpbird |
|