Metamath Proof Explorer


Theorem submateq

Description: Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020)

Ref Expression
Hypotheses submateq.a A=1NMatR
submateq.b B=BaseA
submateq.n φN
submateq.i φI1N
submateq.j φJ1N
submateq.e φEB
submateq.f φFB
submateq.1 φi1NIj1NJiEj=iFj
Assertion submateq φIsubMat1EJ=IsubMat1FJ

Proof

Step Hyp Ref Expression
1 submateq.a A=1NMatR
2 submateq.b B=BaseA
3 submateq.n φN
4 submateq.i φI1N
5 submateq.j φJ1N
6 submateq.e φEB
7 submateq.f φFB
8 submateq.1 φi1NIj1NJiEj=iFj
9 simprl φx1N1y1N1x1N1
10 3 ad2antrr φx1N1IxN
11 4 ad2antrr φx1N1IxI1N
12 simplr φx1N1Ixx1N1
13 simpr φx1N1IxIx
14 10 11 12 13 submateqlem1 φx1N1IxxINx+11NI
15 14 simprd φx1N1Ixx+11NI
16 9 15 syldanl φx1N1y1N1Ixx+11NI
17 16 adantr φx1N1y1N1IxJyx+11NI
18 simprr φx1N1y1N1y1N1
19 3 ad2antrr φy1N1JyN
20 5 ad2antrr φy1N1JyJ1N
21 simplr φy1N1Jyy1N1
22 simpr φy1N1JyJy
23 19 20 21 22 submateqlem1 φy1N1JyyJNy+11NJ
24 23 simprd φy1N1Jyy+11NJ
25 18 24 syldanl φx1N1y1N1Jyy+11NJ
26 25 adantlr φx1N1y1N1IxJyy+11NJ
27 17 26 jca φx1N1y1N1IxJyx+11NIy+11NJ
28 ovexd φx+1V
29 ovexd φy+1V
30 simpl i=x+1j=y+1i=x+1
31 30 eleq1d i=x+1j=y+1i1NIx+11NI
32 simpr i=x+1j=y+1j=y+1
33 32 eleq1d i=x+1j=y+1j1NJy+11NJ
34 31 33 anbi12d i=x+1j=y+1i1NIj1NJx+11NIy+11NJ
35 oveq12 i=x+1j=y+1iEj=x+1Ey+1
36 oveq12 i=x+1j=y+1iFj=x+1Fy+1
37 35 36 eqeq12d i=x+1j=y+1iEj=iFjx+1Ey+1=x+1Fy+1
38 34 37 imbi12d i=x+1j=y+1i1NIj1NJiEj=iFjx+11NIy+11NJx+1Ey+1=x+1Fy+1
39 8 3expib φi1NIj1NJiEj=iFj
40 28 29 38 39 vtocl2d φx+11NIy+11NJx+1Ey+1=x+1Fy+1
41 40 ad3antrrr φx1N1y1N1IxJyx+11NIy+11NJx+1Ey+1=x+1Fy+1
42 27 41 mpd φx1N1y1N1IxJyx+1Ey+1=x+1Fy+1
43 eqid IsubMat1EJ=IsubMat1EJ
44 3 ad3antrrr φx1N1y1N1IxJyN
45 4 ad3antrrr φx1N1y1N1IxJyI1N
46 5 ad3antrrr φx1N1y1N1IxJyJ1N
47 eqid BaseR=BaseR
48 1 47 2 matbas2i EBEBaseR1N×1N
49 6 48 syl φEBaseR1N×1N
50 49 ad3antrrr φx1N1y1N1IxJyEBaseR1N×1N
51 14 simpld φx1N1IxxIN
52 9 51 syldanl φx1N1y1N1IxxIN
53 52 adantr φx1N1y1N1IxJyxIN
54 23 simpld φy1N1JyyJN
55 18 54 syldanl φx1N1y1N1JyyJN
56 55 adantlr φx1N1y1N1IxJyyJN
57 43 44 44 45 46 50 53 56 smatbr φx1N1y1N1IxJyxIsubMat1EJy=x+1Ey+1
58 eqid IsubMat1FJ=IsubMat1FJ
59 1 47 2 matbas2i FBFBaseR1N×1N
60 7 59 syl φFBaseR1N×1N
61 60 ad3antrrr φx1N1y1N1IxJyFBaseR1N×1N
62 58 44 44 45 46 61 53 56 smatbr φx1N1y1N1IxJyxIsubMat1FJy=x+1Fy+1
63 42 57 62 3eqtr4d φx1N1y1N1IxJyxIsubMat1EJy=xIsubMat1FJy
64 16 adantr φx1N1y1N1Ixy<Jx+11NI
65 3 ad2antrr φy1N1y<JN
66 5 ad2antrr φy1N1y<JJ1N
67 simplr φy1N1y<Jy1N1
68 simpr φy1N1y<Jy<J
69 65 66 67 68 submateqlem2 φy1N1y<Jy1..^Jy1NJ
70 69 simprd φy1N1y<Jy1NJ
71 18 70 syldanl φx1N1y1N1y<Jy1NJ
72 71 adantlr φx1N1y1N1Ixy<Jy1NJ
73 64 72 jca φx1N1y1N1Ixy<Jx+11NIy1NJ
74 vex yV
75 74 a1i φyV
76 simpl i=x+1j=yi=x+1
77 76 eleq1d i=x+1j=yi1NIx+11NI
78 simpr i=x+1j=yj=y
79 eqidd i=x+1j=y1NJ=1NJ
80 78 79 eleq12d i=x+1j=yj1NJy1NJ
81 77 80 anbi12d i=x+1j=yi1NIj1NJx+11NIy1NJ
82 oveq12 i=x+1j=yiEj=x+1Ey
83 oveq12 i=x+1j=yiFj=x+1Fy
84 82 83 eqeq12d i=x+1j=yiEj=iFjx+1Ey=x+1Fy
85 81 84 imbi12d i=x+1j=yi1NIj1NJiEj=iFjx+11NIy1NJx+1Ey=x+1Fy
86 28 75 85 39 vtocl2d φx+11NIy1NJx+1Ey=x+1Fy
87 86 ad3antrrr φx1N1y1N1Ixy<Jx+11NIy1NJx+1Ey=x+1Fy
88 73 87 mpd φx1N1y1N1Ixy<Jx+1Ey=x+1Fy
89 3 ad3antrrr φx1N1y1N1Ixy<JN
90 4 ad3antrrr φx1N1y1N1Ixy<JI1N
91 5 ad3antrrr φx1N1y1N1Ixy<JJ1N
92 49 ad3antrrr φx1N1y1N1Ixy<JEBaseR1N×1N
93 52 adantr φx1N1y1N1Ixy<JxIN
94 69 simpld φy1N1y<Jy1..^J
95 18 94 syldanl φx1N1y1N1y<Jy1..^J
96 95 adantlr φx1N1y1N1Ixy<Jy1..^J
97 43 89 89 90 91 92 93 96 smattr φx1N1y1N1Ixy<JxIsubMat1EJy=x+1Ey
98 60 ad3antrrr φx1N1y1N1Ixy<JFBaseR1N×1N
99 58 89 89 90 91 98 93 96 smattr φx1N1y1N1Ixy<JxIsubMat1FJy=x+1Fy
100 88 97 99 3eqtr4d φx1N1y1N1Ixy<JxIsubMat1EJy=xIsubMat1FJy
101 fz1ssnn 1N
102 101 5 sselid φJ
103 102 nnred φJ
104 103 adantr φx1N1y1N1J
105 fz1ssnn 1N1
106 105 18 sselid φx1N1y1N1y
107 106 nnred φx1N1y1N1y
108 lelttric JyJyy<J
109 104 107 108 syl2anc φx1N1y1N1Jyy<J
110 109 adantr φx1N1y1N1IxJyy<J
111 63 100 110 mpjaodan φx1N1y1N1IxxIsubMat1EJy=xIsubMat1FJy
112 3 ad2antrr φx1N1x<IN
113 4 ad2antrr φx1N1x<II1N
114 simplr φx1N1x<Ix1N1
115 simpr φx1N1x<Ix<I
116 112 113 114 115 submateqlem2 φx1N1x<Ix1..^Ix1NI
117 116 simprd φx1N1x<Ix1NI
118 9 117 syldanl φx1N1y1N1x<Ix1NI
119 118 adantr φx1N1y1N1x<IJyx1NI
120 25 adantlr φx1N1y1N1x<IJyy+11NJ
121 119 120 jca φx1N1y1N1x<IJyx1NIy+11NJ
122 vex xV
123 122 a1i φxV
124 simpl i=xj=y+1i=x
125 124 eleq1d i=xj=y+1i1NIx1NI
126 simpr i=xj=y+1j=y+1
127 126 eleq1d i=xj=y+1j1NJy+11NJ
128 125 127 anbi12d i=xj=y+1i1NIj1NJx1NIy+11NJ
129 oveq12 i=xj=y+1iEj=xEy+1
130 oveq12 i=xj=y+1iFj=xFy+1
131 129 130 eqeq12d i=xj=y+1iEj=iFjxEy+1=xFy+1
132 128 131 imbi12d i=xj=y+1i1NIj1NJiEj=iFjx1NIy+11NJxEy+1=xFy+1
133 123 29 132 39 vtocl2d φx1NIy+11NJxEy+1=xFy+1
134 133 ad3antrrr φx1N1y1N1x<IJyx1NIy+11NJxEy+1=xFy+1
135 121 134 mpd φx1N1y1N1x<IJyxEy+1=xFy+1
136 3 ad3antrrr φx1N1y1N1x<IJyN
137 4 ad3antrrr φx1N1y1N1x<IJyI1N
138 5 ad3antrrr φx1N1y1N1x<IJyJ1N
139 49 ad3antrrr φx1N1y1N1x<IJyEBaseR1N×1N
140 116 simpld φx1N1x<Ix1..^I
141 9 140 syldanl φx1N1y1N1x<Ix1..^I
142 141 adantr φx1N1y1N1x<IJyx1..^I
143 55 adantlr φx1N1y1N1x<IJyyJN
144 43 136 136 137 138 139 142 143 smatbl φx1N1y1N1x<IJyxIsubMat1EJy=xEy+1
145 60 ad3antrrr φx1N1y1N1x<IJyFBaseR1N×1N
146 58 136 136 137 138 145 142 143 smatbl φx1N1y1N1x<IJyxIsubMat1FJy=xFy+1
147 135 144 146 3eqtr4d φx1N1y1N1x<IJyxIsubMat1EJy=xIsubMat1FJy
148 118 adantr φx1N1y1N1x<Iy<Jx1NI
149 71 adantlr φx1N1y1N1x<Iy<Jy1NJ
150 148 149 jca φx1N1y1N1x<Iy<Jx1NIy1NJ
151 simpl i=xj=yi=x
152 151 eleq1d i=xj=yi1NIx1NI
153 simpr i=xj=yj=y
154 153 eleq1d i=xj=yj1NJy1NJ
155 152 154 anbi12d i=xj=yi1NIj1NJx1NIy1NJ
156 oveq12 i=xj=yiEj=xEy
157 oveq12 i=xj=yiFj=xFy
158 156 157 eqeq12d i=xj=yiEj=iFjxEy=xFy
159 155 158 imbi12d i=xj=yi1NIj1NJiEj=iFjx1NIy1NJxEy=xFy
160 123 75 159 39 vtocl2d φx1NIy1NJxEy=xFy
161 160 ad3antrrr φx1N1y1N1x<Iy<Jx1NIy1NJxEy=xFy
162 150 161 mpd φx1N1y1N1x<Iy<JxEy=xFy
163 3 ad3antrrr φx1N1y1N1x<Iy<JN
164 4 ad3antrrr φx1N1y1N1x<Iy<JI1N
165 5 ad3antrrr φx1N1y1N1x<Iy<JJ1N
166 49 ad3antrrr φx1N1y1N1x<Iy<JEBaseR1N×1N
167 141 adantr φx1N1y1N1x<Iy<Jx1..^I
168 95 adantlr φx1N1y1N1x<Iy<Jy1..^J
169 43 163 163 164 165 166 167 168 smattl φx1N1y1N1x<Iy<JxIsubMat1EJy=xEy
170 60 ad3antrrr φx1N1y1N1x<Iy<JFBaseR1N×1N
171 58 163 163 164 165 170 167 168 smattl φx1N1y1N1x<Iy<JxIsubMat1FJy=xFy
172 162 169 171 3eqtr4d φx1N1y1N1x<Iy<JxIsubMat1EJy=xIsubMat1FJy
173 109 adantr φx1N1y1N1x<IJyy<J
174 147 172 173 mpjaodan φx1N1y1N1x<IxIsubMat1EJy=xIsubMat1FJy
175 101 4 sselid φI
176 175 nnred φI
177 176 adantr φx1N1y1N1I
178 105 9 sselid φx1N1y1N1x
179 178 nnred φx1N1y1N1x
180 lelttric IxIxx<I
181 177 179 180 syl2anc φx1N1y1N1Ixx<I
182 111 174 181 mpjaodan φx1N1y1N1xIsubMat1EJy=xIsubMat1FJy
183 182 ralrimivva φx1N1y1N1xIsubMat1EJy=xIsubMat1FJy
184 eqid Base1N1MatR=Base1N1MatR
185 1 2 184 43 3 4 5 6 smatcl φIsubMat1EJBase1N1MatR
186 1 2 184 58 3 4 5 7 smatcl φIsubMat1FJBase1N1MatR
187 eqid 1N1MatR=1N1MatR
188 187 184 eqmat IsubMat1EJBase1N1MatRIsubMat1FJBase1N1MatRIsubMat1EJ=IsubMat1FJx1N1y1N1xIsubMat1EJy=xIsubMat1FJy
189 185 186 188 syl2anc φIsubMat1EJ=IsubMat1FJx1N1y1N1xIsubMat1EJy=xIsubMat1FJy
190 183 189 mpbird φIsubMat1EJ=IsubMat1FJ