Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supminfrnmpt.x | |
|
supminfrnmpt.a | |
||
supminfrnmpt.b | |
||
supminfrnmpt.y | |
||
Assertion | supminfrnmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supminfrnmpt.x | |
|
2 | supminfrnmpt.a | |
|
3 | supminfrnmpt.b | |
|
4 | supminfrnmpt.y | |
|
5 | eqid | |
|
6 | 1 5 3 | rnmptssd | |
7 | 1 3 5 2 | rnmptn0 | |
8 | 1 4 | rnmptbdd | |
9 | supminf | |
|
10 | 6 7 8 9 | syl3anc | |
11 | eqid | |
|
12 | simpr | |
|
13 | renegcl | |
|
14 | 5 | elrnmpt | |
15 | 13 14 | syl | |
16 | 15 | adantr | |
17 | 12 16 | mpbid | |
18 | 17 | adantll | |
19 | nfv | |
|
20 | 1 19 | nfan | |
21 | negeq | |
|
22 | 21 | eqcomd | |
23 | 22 | adantl | |
24 | recn | |
|
25 | 24 | negnegd | |
26 | 25 | adantr | |
27 | 23 26 | eqtr2d | |
28 | 27 | ex | |
29 | 28 | adantl | |
30 | 29 | adantr | |
31 | negeq | |
|
32 | 31 | adantl | |
33 | 3 | recnd | |
34 | 33 | negnegd | |
35 | 34 | adantr | |
36 | 32 35 | eqtrd | |
37 | 36 | ex | |
38 | 37 | adantlr | |
39 | 30 38 | impbid | |
40 | 20 39 | rexbida | |
41 | 40 | adantr | |
42 | 18 41 | mpbid | |
43 | simplr | |
|
44 | 11 42 43 | elrnmptd | |
45 | 44 | ex | |
46 | 45 | ralrimiva | |
47 | rabss | |
|
48 | 46 47 | sylibr | |
49 | nfcv | |
|
50 | nfmpt1 | |
|
51 | 50 | nfrn | |
52 | 49 51 | nfel | |
53 | nfcv | |
|
54 | 52 53 | nfrabw | |
55 | 31 | eleq1d | |
56 | 3 | renegcld | |
57 | simpr | |
|
58 | 5 | elrnmpt1 | |
59 | 57 3 58 | syl2anc | |
60 | 34 59 | eqeltrd | |
61 | 55 56 60 | elrabd | |
62 | 1 54 11 61 | rnmptssdf | |
63 | 48 62 | eqssd | |
64 | 63 | infeq1d | |
65 | 64 | negeqd | |
66 | 10 65 | eqtrd | |