Metamath Proof Explorer


Theorem sylow1lem4

Description: Lemma for sylow1 . The stabilizer subgroup of any element of S is at most P ^ N in size. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses sylow1.x X=BaseG
sylow1.g φGGrp
sylow1.f φXFin
sylow1.p φP
sylow1.n φN0
sylow1.d φPNX
sylow1lem.a +˙=+G
sylow1lem.s S=s𝒫X|s=PN
sylow1lem.m ˙=xX,ySranzyx+˙z
sylow1lem3.1 ˙=xy|xySgXg˙x=y
sylow1lem4.b φBS
sylow1lem4.h H=uX|u˙B=B
Assertion sylow1lem4 φHPN

Proof

Step Hyp Ref Expression
1 sylow1.x X=BaseG
2 sylow1.g φGGrp
3 sylow1.f φXFin
4 sylow1.p φP
5 sylow1.n φN0
6 sylow1.d φPNX
7 sylow1lem.a +˙=+G
8 sylow1lem.s S=s𝒫X|s=PN
9 sylow1lem.m ˙=xX,ySranzyx+˙z
10 sylow1lem3.1 ˙=xy|xySgXg˙x=y
11 sylow1lem4.b φBS
12 sylow1lem4.h H=uX|u˙B=B
13 fveqeq2 s=Bs=PNB=PN
14 13 8 elrab2 BSB𝒫XB=PN
15 11 14 sylib φB𝒫XB=PN
16 15 simprd φB=PN
17 prmnn PP
18 4 17 syl φP
19 18 5 nnexpcld φPN
20 16 19 eqeltrd φB
21 20 nnne0d φB0
22 hasheq0 BSB=0B=
23 22 necon3bid BSB0B
24 11 23 syl φB0B
25 21 24 mpbid φB
26 n0 BaaB
27 25 26 sylib φaaB
28 11 adantr φaBBS
29 simplr φaBbHaB
30 oveq2 z=ab+˙z=b+˙a
31 eqid zBb+˙z=zBb+˙z
32 ovex b+˙aV
33 30 31 32 fvmpt aBzBb+˙za=b+˙a
34 29 33 syl φaBbHzBb+˙za=b+˙a
35 ovex b+˙zV
36 35 31 fnmpti zBb+˙zFnB
37 fnfvelrn zBb+˙zFnBaBzBb+˙zaranzBb+˙z
38 36 29 37 sylancr φaBbHzBb+˙zaranzBb+˙z
39 34 38 eqeltrrd φaBbHb+˙aranzBb+˙z
40 12 ssrab3 HX
41 simpr φaBbHbH
42 40 41 sselid φaBbHbX
43 11 ad2antrr φaBbHBS
44 mptexg BSzBb+˙zV
45 rnexg zBb+˙zVranzBb+˙zV
46 43 44 45 3syl φaBbHranzBb+˙zV
47 simpr x=by=By=B
48 simpl x=by=Bx=b
49 48 oveq1d x=by=Bx+˙z=b+˙z
50 47 49 mpteq12dv x=by=Bzyx+˙z=zBb+˙z
51 50 rneqd x=by=Branzyx+˙z=ranzBb+˙z
52 51 9 ovmpoga bXBSranzBb+˙zVb˙B=ranzBb+˙z
53 42 43 46 52 syl3anc φaBbHb˙B=ranzBb+˙z
54 39 53 eleqtrrd φaBbHb+˙ab˙B
55 oveq1 u=bu˙B=b˙B
56 55 eqeq1d u=bu˙B=Bb˙B=B
57 56 12 elrab2 bHbXb˙B=B
58 57 simprbi bHb˙B=B
59 58 adantl φaBbHb˙B=B
60 54 59 eleqtrd φaBbHb+˙aB
61 60 ex φaBbHb+˙aB
62 2 ad2antrr φaBbHcHGGrp
63 simprl φaBbHcHbH
64 40 63 sselid φaBbHcHbX
65 simprr φaBbHcHcH
66 40 65 sselid φaBbHcHcX
67 15 simpld φB𝒫X
68 67 elpwid φBX
69 68 sselda φaBaX
70 69 adantr φaBbHcHaX
71 1 7 grprcan GGrpbXcXaXb+˙a=c+˙ab=c
72 62 64 66 70 71 syl13anc φaBbHcHb+˙a=c+˙ab=c
73 72 ex φaBbHcHb+˙a=c+˙ab=c
74 61 73 dom2d φaBBSHB
75 28 74 mpd φaBHB
76 27 75 exlimddv φHB
77 ssfi XFinHXHFin
78 3 40 77 sylancl φHFin
79 3 68 ssfid φBFin
80 hashdom HFinBFinHBHB
81 78 79 80 syl2anc φHBHB
82 76 81 mpbird φHB
83 82 16 breqtrd φHPN