Metamath Proof Explorer


Theorem sylow3lem4

Description: Lemma for sylow3 , first part. The number of Sylow subgroups is a divisor of the size of G reduced by the size of a Sylow subgroup of G . (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses sylow3.x X=BaseG
sylow3.g φGGrp
sylow3.xf φXFin
sylow3.p φP
sylow3lem1.a +˙=+G
sylow3lem1.d -˙=-G
sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
sylow3lem2.k φKPpSylG
sylow3lem2.h H=uX|u˙K=K
sylow3lem2.n N=xX|yXx+˙yKy+˙xK
Assertion sylow3lem4 φPpSylGXPPpCntX

Proof

Step Hyp Ref Expression
1 sylow3.x X=BaseG
2 sylow3.g φGGrp
3 sylow3.xf φXFin
4 sylow3.p φP
5 sylow3lem1.a +˙=+G
6 sylow3lem1.d -˙=-G
7 sylow3lem1.m ˙=xX,yPpSylGranzyx+˙z-˙x
8 sylow3lem2.k φKPpSylG
9 sylow3lem2.h H=uX|u˙K=K
10 sylow3lem2.n N=xX|yXx+˙yKy+˙xK
11 1 2 3 4 5 6 7 8 9 10 sylow3lem3 φPpSylG=X/G~QGN
12 slwsubg KPpSylGKSubGrpG
13 8 12 syl φKSubGrpG
14 eqid G𝑠N=G𝑠N
15 10 1 5 14 nmznsg KSubGrpGKNrmSGrpG𝑠N
16 nsgsubg KNrmSGrpG𝑠NKSubGrpG𝑠N
17 15 16 syl KSubGrpGKSubGrpG𝑠N
18 13 17 syl φKSubGrpG𝑠N
19 10 1 5 nmzsubg GGrpNSubGrpG
20 2 19 syl φNSubGrpG
21 14 subgbas NSubGrpGN=BaseG𝑠N
22 20 21 syl φN=BaseG𝑠N
23 1 subgss NSubGrpGNX
24 20 23 syl φNX
25 3 24 ssfid φNFin
26 22 25 eqeltrrd φBaseG𝑠NFin
27 eqid BaseG𝑠N=BaseG𝑠N
28 27 lagsubg KSubGrpG𝑠NBaseG𝑠NFinKBaseG𝑠N
29 18 26 28 syl2anc φKBaseG𝑠N
30 22 fveq2d φN=BaseG𝑠N
31 29 30 breqtrrd φKN
32 eqid 0G=0G
33 32 subg0cl KSubGrpG0GK
34 13 33 syl φ0GK
35 34 ne0d φK
36 1 subgss KSubGrpGKX
37 13 36 syl φKX
38 3 37 ssfid φKFin
39 hashnncl KFinKK
40 38 39 syl φKK
41 35 40 mpbird φK
42 41 nnzd φK
43 hashcl NFinN0
44 25 43 syl φN0
45 44 nn0zd φN
46 pwfi XFin𝒫XFin
47 3 46 sylib φ𝒫XFin
48 eqid G~QGN=G~QGN
49 1 48 eqger NSubGrpGG~QGNErX
50 20 49 syl φG~QGNErX
51 50 qsss φX/G~QGN𝒫X
52 47 51 ssfid φX/G~QGNFin
53 hashcl X/G~QGNFinX/G~QGN0
54 52 53 syl φX/G~QGN0
55 54 nn0zd φX/G~QGN
56 dvdscmul KNX/G~QGNKNX/G~QGNKX/G~QGNN
57 42 45 55 56 syl3anc φKNX/G~QGNKX/G~QGNN
58 31 57 mpd φX/G~QGNKX/G~QGNN
59 hashcl XFinX0
60 3 59 syl φX0
61 60 nn0cnd φX
62 41 nncnd φK
63 41 nnne0d φK0
64 61 62 63 divcan1d φXKK=X
65 1 48 20 3 lagsubg2 φX=X/G~QGNN
66 64 65 eqtrd φXKK=X/G~QGNN
67 58 66 breqtrrd φX/G~QGNKXKK
68 1 lagsubg KSubGrpGXFinKX
69 13 3 68 syl2anc φKX
70 60 nn0zd φX
71 dvdsval2 KK0XKXXK
72 42 63 70 71 syl3anc φKXXK
73 69 72 mpbid φXK
74 dvdsmulcr X/G~QGNXKKK0X/G~QGNKXKKX/G~QGNXK
75 55 73 42 63 74 syl112anc φX/G~QGNKXKKX/G~QGNXK
76 67 75 mpbid φX/G~QGNXK
77 1 3 8 slwhash φK=PPpCntX
78 77 oveq2d φXK=XPPpCntX
79 76 78 breqtrd φX/G~QGNXPPpCntX
80 11 79 eqbrtrd φPpSylGXPPpCntX