Metamath Proof Explorer


Theorem taylfval

Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x .

This "extended" version of taylpfval additionally handles the case N = +oo , in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φS
taylfval.f φF:A
taylfval.a φAS
taylfval.n φN0N=+∞
taylfval.b φk0NBdomSDnFk
taylfval.t T=NSTaylFB
Assertion taylfval φT=xx×fldtsumsk0NSDnFkBk!xBk

Proof

Step Hyp Ref Expression
1 taylfval.s φS
2 taylfval.f φF:A
3 taylfval.a φAS
4 taylfval.n φN0N=+∞
5 taylfval.b φk0NBdomSDnFk
6 taylfval.t T=NSTaylFB
7 df-tayl Tayl=s,f𝑝𝑚sn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak
8 7 a1i φTayl=s,f𝑝𝑚sn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak
9 eqidd φs=Sf=F0+∞=0+∞
10 oveq12 s=Sf=FsDnf=SDnF
11 10 ad2antlr φs=Sf=Fk0nsDnf=SDnF
12 11 fveq1d φs=Sf=Fk0nsDnfk=SDnFk
13 12 dmeqd φs=Sf=Fk0ndomsDnfk=domSDnFk
14 13 iineq2dv φs=Sf=Fk0ndomsDnfk=k0ndomSDnFk
15 12 fveq1d φs=Sf=Fk0nsDnfka=SDnFka
16 15 oveq1d φs=Sf=Fk0nsDnfkak!=SDnFkak!
17 16 oveq1d φs=Sf=Fk0nsDnfkak!xak=SDnFkak!xak
18 17 mpteq2dva φs=Sf=Fk0nsDnfkak!xak=k0nSDnFkak!xak
19 18 oveq2d φs=Sf=Ffldtsumsk0nsDnfkak!xak=fldtsumsk0nSDnFkak!xak
20 19 xpeq2d φs=Sf=Fx×fldtsumsk0nsDnfkak!xak=x×fldtsumsk0nSDnFkak!xak
21 20 iuneq2d φs=Sf=Fxx×fldtsumsk0nsDnfkak!xak=xx×fldtsumsk0nSDnFkak!xak
22 9 14 21 mpoeq123dv φs=Sf=Fn0+∞,ak0ndomsDnfkxx×fldtsumsk0nsDnfkak!xak=n0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xak
23 simpr φs=Ss=S
24 23 oveq2d φs=S𝑝𝑚s=𝑝𝑚S
25 cnex V
26 25 a1i φV
27 elpm2r VSF:AASF𝑝𝑚S
28 26 1 2 3 27 syl22anc φF𝑝𝑚S
29 nn0ex 0V
30 snex +∞V
31 29 30 unex 0+∞V
32 0xr 0*
33 nn0ssre 0
34 ressxr *
35 33 34 sstri 0*
36 pnfxr +∞*
37 snssi +∞*+∞*
38 36 37 ax-mp +∞*
39 35 38 unssi 0+∞*
40 39 sseli n0+∞n*
41 elun n0+∞n0n+∞
42 nn0ge0 n00n
43 0lepnf 0+∞
44 elsni n+∞n=+∞
45 43 44 breqtrrid n+∞0n
46 42 45 jaoi n0n+∞0n
47 41 46 sylbi n0+∞0n
48 lbicc2 0*n*0n00n
49 32 40 47 48 mp3an2i n0+∞00n
50 0z 0
51 inelcm 00n00n
52 49 50 51 sylancl n0+∞0n
53 fvex SDnFkV
54 53 dmex domSDnFkV
55 54 rgenw k0ndomSDnFkV
56 iinexg 0nk0ndomSDnFkVk0ndomSDnFkV
57 52 55 56 sylancl n0+∞k0ndomSDnFkV
58 57 rgen n0+∞k0ndomSDnFkV
59 eqid n0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xak=n0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xak
60 59 mpoexxg 0+∞Vn0+∞k0ndomSDnFkVn0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xakV
61 31 58 60 mp2an n0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xakV
62 61 a1i φn0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xakV
63 8 22 24 1 28 62 ovmpodx φSTaylF=n0+∞,ak0ndomSDnFkxx×fldtsumsk0nSDnFkak!xak
64 simprl φn=Na=Bn=N
65 64 oveq2d φn=Na=B0n=0N
66 65 ineq1d φn=Na=B0n=0N
67 simprr φn=Na=Ba=B
68 67 fveq2d φn=Na=BSDnFka=SDnFkB
69 68 oveq1d φn=Na=BSDnFkak!=SDnFkBk!
70 67 oveq2d φn=Na=Bxa=xB
71 70 oveq1d φn=Na=Bxak=xBk
72 69 71 oveq12d φn=Na=BSDnFkak!xak=SDnFkBk!xBk
73 66 72 mpteq12dv φn=Na=Bk0nSDnFkak!xak=k0NSDnFkBk!xBk
74 73 oveq2d φn=Na=Bfldtsumsk0nSDnFkak!xak=fldtsumsk0NSDnFkBk!xBk
75 74 xpeq2d φn=Na=Bx×fldtsumsk0nSDnFkak!xak=x×fldtsumsk0NSDnFkBk!xBk
76 75 iuneq2d φn=Na=Bxx×fldtsumsk0nSDnFkak!xak=xx×fldtsumsk0NSDnFkBk!xBk
77 simpr φn=Nn=N
78 77 oveq2d φn=N0n=0N
79 78 ineq1d φn=N0n=0N
80 iineq1 0n=0Nk0ndomSDnFk=k0NdomSDnFk
81 79 80 syl φn=Nk0ndomSDnFk=k0NdomSDnFk
82 pnfex +∞V
83 82 elsn2 N+∞N=+∞
84 83 orbi2i N0N+∞N0N=+∞
85 4 84 sylibr φN0N+∞
86 elun N0+∞N0N+∞
87 85 86 sylibr φN0+∞
88 5 ralrimiva φk0NBdomSDnFk
89 oveq2 n=N0n=0N
90 89 ineq1d n=N0n=0N
91 90 neeq1d n=N0n0N
92 91 52 vtoclga N0+∞0N
93 87 92 syl φ0N
94 r19.2z 0Nk0NBdomSDnFkk0NBdomSDnFk
95 93 88 94 syl2anc φk0NBdomSDnFk
96 elex BdomSDnFkBV
97 96 rexlimivw k0NBdomSDnFkBV
98 eliin BVBk0NdomSDnFkk0NBdomSDnFk
99 95 97 98 3syl φBk0NdomSDnFkk0NBdomSDnFk
100 88 99 mpbird φBk0NdomSDnFk
101 snssi xx
102 1 2 3 4 5 taylfvallem φxfldtsumsk0NSDnFkBk!xBk
103 xpss12 xfldtsumsk0NSDnFkBk!xBkx×fldtsumsk0NSDnFkBk!xBk×
104 101 102 103 syl2an2 φxx×fldtsumsk0NSDnFkBk!xBk×
105 104 ralrimiva φxx×fldtsumsk0NSDnFkBk!xBk×
106 iunss xx×fldtsumsk0NSDnFkBk!xBk×xx×fldtsumsk0NSDnFkBk!xBk×
107 105 106 sylibr φxx×fldtsumsk0NSDnFkBk!xBk×
108 25 25 xpex ×V
109 108 ssex xx×fldtsumsk0NSDnFkBk!xBk×xx×fldtsumsk0NSDnFkBk!xBkV
110 107 109 syl φxx×fldtsumsk0NSDnFkBk!xBkV
111 63 76 81 87 100 110 ovmpodx φNSTaylFB=xx×fldtsumsk0NSDnFkBk!xBk
112 6 111 eqtrid φT=xx×fldtsumsk0NSDnFkBk!xBk