Metamath Proof Explorer


Theorem thincciso

Description: Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of Adamek p. 33. (Contributed by Zhi Wang, 16-Oct-2024)

Ref Expression
Hypotheses thincciso.c C=CatCatU
thincciso.b B=BaseC
thincciso.r R=BaseX
thincciso.s S=BaseY
thincciso.h H=HomX
thincciso.j J=HomY
thincciso.u φUV
thincciso.x φXB
thincciso.y φYB
thincciso.xt No typesetting found for |- ( ph -> X e. ThinCat ) with typecode |-
thincciso.yt No typesetting found for |- ( ph -> Y e. ThinCat ) with typecode |-
Assertion thincciso φX𝑐CYfxRyRxHy=fxJfy=f:R1-1 ontoS

Proof

Step Hyp Ref Expression
1 thincciso.c C=CatCatU
2 thincciso.b B=BaseC
3 thincciso.r R=BaseX
4 thincciso.s S=BaseY
5 thincciso.h H=HomX
6 thincciso.j J=HomY
7 thincciso.u φUV
8 thincciso.x φXB
9 thincciso.y φYB
10 thincciso.xt Could not format ( ph -> X e. ThinCat ) : No typesetting found for |- ( ph -> X e. ThinCat ) with typecode |-
11 thincciso.yt Could not format ( ph -> Y e. ThinCat ) : No typesetting found for |- ( ph -> Y e. ThinCat ) with typecode |-
12 eqid IsoC=IsoC
13 1 catccat UVCCat
14 7 13 syl φCCat
15 12 2 14 8 9 cic φX𝑐CYaaXIsoCY
16 opex fzR,wRzHw×fzJfwV
17 16 a1i φxRyRxHy=fxJfy=f:R1-1 ontoSfzR,wRzHw×fzJfwV
18 biimp xHy=fxJfy=xHy=fxJfy=
19 18 2ralimi xRyRxHy=fxJfy=xRyRxHy=fxJfy=
20 19 ad2antrl φxRyRxHy=fxJfy=f:R1-1 ontoSxRyRxHy=fxJfy=
21 11 adantr Could not format ( ( ph /\ ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) -> Y e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) -> Y e. ThinCat ) with typecode |-
22 eqid zR,wRzHw×fzJfw=zR,wRzHw×fzJfw
23 10 adantr Could not format ( ( ph /\ ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) -> X e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) -> X e. ThinCat ) with typecode |-
24 23 thinccd φxRyRxHy=fxJfy=f:R1-1 ontoSXCat
25 simprr φxRyRxHy=fxJfy=f:R1-1 ontoSf:R1-1 ontoS
26 f1of f:R1-1 ontoSf:RS
27 25 26 syl φxRyRxHy=fxJfy=f:R1-1 ontoSf:RS
28 biimpr xHy=fxJfy=fxJfy=xHy=
29 28 2ralimi xRyRxHy=fxJfy=xRyRfxJfy=xHy=
30 29 ad2antrl φxRyRxHy=fxJfy=f:R1-1 ontoSxRyRfxJfy=xHy=
31 3 4 5 6 24 21 27 22 30 functhinc φxRyRxHy=fxJfy=f:R1-1 ontoSfXFuncYzR,wRzHw×fzJfwzR,wRzHw×fzJfw=zR,wRzHw×fzJfw
32 22 31 mpbiri φxRyRxHy=fxJfy=f:R1-1 ontoSfXFuncYzR,wRzHw×fzJfw
33 3 6 5 21 32 fullthinc φxRyRxHy=fxJfy=f:R1-1 ontoSfXFullYzR,wRzHw×fzJfwxRyRxHy=fxJfy=
34 20 33 mpbird φxRyRxHy=fxJfy=f:R1-1 ontoSfXFullYzR,wRzHw×fzJfw
35 df-br fXFullYzR,wRzHw×fzJfwfzR,wRzHw×fzJfwXFullY
36 34 35 sylib φxRyRxHy=fxJfy=f:R1-1 ontoSfzR,wRzHw×fzJfwXFullY
37 23 32 thincfth φxRyRxHy=fxJfy=f:R1-1 ontoSfXFaithYzR,wRzHw×fzJfw
38 df-br fXFaithYzR,wRzHw×fzJfwfzR,wRzHw×fzJfwXFaithY
39 37 38 sylib φxRyRxHy=fxJfy=f:R1-1 ontoSfzR,wRzHw×fzJfwXFaithY
40 36 39 elind φxRyRxHy=fxJfy=f:R1-1 ontoSfzR,wRzHw×fzJfwXFullYXFaithY
41 vex fV
42 3 fvexi RV
43 42 42 mpoex zR,wRzHw×fzJfwV
44 41 43 op1st 1stfzR,wRzHw×fzJfw=f
45 f1oeq1 1stfzR,wRzHw×fzJfw=f1stfzR,wRzHw×fzJfw:R1-1 ontoSf:R1-1 ontoS
46 44 45 ax-mp 1stfzR,wRzHw×fzJfw:R1-1 ontoSf:R1-1 ontoS
47 25 46 sylibr φxRyRxHy=fxJfy=f:R1-1 ontoS1stfzR,wRzHw×fzJfw:R1-1 ontoS
48 40 47 jca φxRyRxHy=fxJfy=f:R1-1 ontoSfzR,wRzHw×fzJfwXFullYXFaithY1stfzR,wRzHw×fzJfw:R1-1 ontoS
49 1 2 3 4 7 8 9 12 catciso φfzR,wRzHw×fzJfwXIsoCYfzR,wRzHw×fzJfwXFullYXFaithY1stfzR,wRzHw×fzJfw:R1-1 ontoS
50 49 biimpar φfzR,wRzHw×fzJfwXFullYXFaithY1stfzR,wRzHw×fzJfw:R1-1 ontoSfzR,wRzHw×fzJfwXIsoCY
51 48 50 syldan φxRyRxHy=fxJfy=f:R1-1 ontoSfzR,wRzHw×fzJfwXIsoCY
52 eleq1 a=fzR,wRzHw×fzJfwaXIsoCYfzR,wRzHw×fzJfwXIsoCY
53 17 51 52 spcedv φxRyRxHy=fxJfy=f:R1-1 ontoSaaXIsoCY
54 53 ex φxRyRxHy=fxJfy=f:R1-1 ontoSaaXIsoCY
55 54 exlimdv φfxRyRxHy=fxJfy=f:R1-1 ontoSaaXIsoCY
56 fvexd φaXIsoCY1staV
57 relfull RelXFullY
58 1 2 3 4 7 8 9 12 catciso φaXIsoCYaXFullYXFaithY1sta:R1-1 ontoS
59 58 biimpa φaXIsoCYaXFullYXFaithY1sta:R1-1 ontoS
60 59 simpld φaXIsoCYaXFullYXFaithY
61 60 elin1d φaXIsoCYaXFullY
62 1st2ndbr RelXFullYaXFullY1staXFullY2nda
63 57 61 62 sylancr φaXIsoCY1staXFullY2nda
64 11 adantr Could not format ( ( ph /\ a e. ( X ( Iso ` C ) Y ) ) -> Y e. ThinCat ) : No typesetting found for |- ( ( ph /\ a e. ( X ( Iso ` C ) Y ) ) -> Y e. ThinCat ) with typecode |-
65 fullfunc XFullYXFuncY
66 65 ssbri 1staXFullY2nda1staXFuncY2nda
67 63 66 syl φaXIsoCY1staXFuncY2nda
68 3 6 5 64 67 fullthinc φaXIsoCY1staXFullY2ndaxRyRxHy=1staxJ1stay=
69 63 68 mpbid φaXIsoCYxRyRxHy=1staxJ1stay=
70 67 adantr φaXIsoCYxRyR1staXFuncY2nda
71 simprl φaXIsoCYxRyRxR
72 simprr φaXIsoCYxRyRyR
73 3 5 6 70 71 72 funcf2 φaXIsoCYxRyRx2nday:xHy1staxJ1stay
74 73 f002 φaXIsoCYxRyR1staxJ1stay=xHy=
75 74 ralrimivva φaXIsoCYxRyR1staxJ1stay=xHy=
76 2ralbiim xRyRxHy=1staxJ1stay=xRyRxHy=1staxJ1stay=xRyR1staxJ1stay=xHy=
77 69 75 76 sylanbrc φaXIsoCYxRyRxHy=1staxJ1stay=
78 59 simprd φaXIsoCY1sta:R1-1 ontoS
79 77 78 jca φaXIsoCYxRyRxHy=1staxJ1stay=1sta:R1-1 ontoS
80 fveq1 f=1stafx=1stax
81 fveq1 f=1stafy=1stay
82 80 81 oveq12d f=1stafxJfy=1staxJ1stay
83 82 eqeq1d f=1stafxJfy=1staxJ1stay=
84 83 bibi2d f=1staxHy=fxJfy=xHy=1staxJ1stay=
85 84 2ralbidv f=1staxRyRxHy=fxJfy=xRyRxHy=1staxJ1stay=
86 f1oeq1 f=1staf:R1-1 ontoS1sta:R1-1 ontoS
87 85 86 anbi12d f=1staxRyRxHy=fxJfy=f:R1-1 ontoSxRyRxHy=1staxJ1stay=1sta:R1-1 ontoS
88 56 79 87 spcedv φaXIsoCYfxRyRxHy=fxJfy=f:R1-1 ontoS
89 88 ex φaXIsoCYfxRyRxHy=fxJfy=f:R1-1 ontoS
90 89 exlimdv φaaXIsoCYfxRyRxHy=fxJfy=f:R1-1 ontoS
91 55 90 impbid φfxRyRxHy=fxJfy=f:R1-1 ontoSaaXIsoCY
92 15 91 bitr4d φX𝑐CYfxRyRxHy=fxJfy=f:R1-1 ontoS