Metamath Proof Explorer


Theorem tngngp

Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngngp.t T=GtoNrmGrpN
tngngp.x X=BaseG
tngngp.m -˙=-G
tngngp.z 0˙=0G
Assertion tngngp N:XTNrmGrpGGrpxXNx=0x=0˙yXNx-˙yNx+Ny

Proof

Step Hyp Ref Expression
1 tngngp.t T=GtoNrmGrpN
2 tngngp.x X=BaseG
3 tngngp.m -˙=-G
4 tngngp.z 0˙=0G
5 eqid distT=distT
6 1 2 5 tngngp2 N:XTNrmGrpGGrpdistTMetX
7 6 simprbda N:XTNrmGrpGGrp
8 simplr N:XTNrmGrpxXTNrmGrp
9 simpr N:XTNrmGrpxXxX
10 2 fvexi XV
11 reex V
12 fex2 N:XXVVNV
13 10 11 12 mp3an23 N:XNV
14 13 ad2antrr N:XTNrmGrpxXNV
15 1 2 tngbas NVX=BaseT
16 14 15 syl N:XTNrmGrpxXX=BaseT
17 9 16 eleqtrd N:XTNrmGrpxXxBaseT
18 eqid BaseT=BaseT
19 eqid normT=normT
20 eqid 0T=0T
21 18 19 20 nmeq0 TNrmGrpxBaseTnormTx=0x=0T
22 8 17 21 syl2anc N:XTNrmGrpxXnormTx=0x=0T
23 7 adantr N:XTNrmGrpxXGGrp
24 simpll N:XTNrmGrpxXN:X
25 1 2 11 tngnm GGrpN:XN=normT
26 23 24 25 syl2anc N:XTNrmGrpxXN=normT
27 26 fveq1d N:XTNrmGrpxXNx=normTx
28 27 eqeq1d N:XTNrmGrpxXNx=0normTx=0
29 1 4 tng0 NV0˙=0T
30 14 29 syl N:XTNrmGrpxX0˙=0T
31 30 eqeq2d N:XTNrmGrpxXx=0˙x=0T
32 22 28 31 3bitr4d N:XTNrmGrpxXNx=0x=0˙
33 simpllr N:XTNrmGrpxXyXTNrmGrp
34 17 adantr N:XTNrmGrpxXyXxBaseT
35 16 eleq2d N:XTNrmGrpxXyXyBaseT
36 35 biimpa N:XTNrmGrpxXyXyBaseT
37 eqid -T=-T
38 18 19 37 nmmtri TNrmGrpxBaseTyBaseTnormTx-TynormTx+normTy
39 33 34 36 38 syl3anc N:XTNrmGrpxXyXnormTx-TynormTx+normTy
40 2 16 eqtr3id N:XTNrmGrpxXBaseG=BaseT
41 eqid +G=+G
42 1 41 tngplusg NV+G=+T
43 14 42 syl N:XTNrmGrpxX+G=+T
44 40 43 grpsubpropd N:XTNrmGrpxX-G=-T
45 3 44 eqtrid N:XTNrmGrpxX-˙=-T
46 45 oveqd N:XTNrmGrpxXx-˙y=x-Ty
47 26 46 fveq12d N:XTNrmGrpxXNx-˙y=normTx-Ty
48 47 adantr N:XTNrmGrpxXyXNx-˙y=normTx-Ty
49 26 fveq1d N:XTNrmGrpxXNy=normTy
50 27 49 oveq12d N:XTNrmGrpxXNx+Ny=normTx+normTy
51 50 adantr N:XTNrmGrpxXyXNx+Ny=normTx+normTy
52 39 48 51 3brtr4d N:XTNrmGrpxXyXNx-˙yNx+Ny
53 52 ralrimiva N:XTNrmGrpxXyXNx-˙yNx+Ny
54 32 53 jca N:XTNrmGrpxXNx=0x=0˙yXNx-˙yNx+Ny
55 54 ralrimiva N:XTNrmGrpxXNx=0x=0˙yXNx-˙yNx+Ny
56 7 55 jca N:XTNrmGrpGGrpxXNx=0x=0˙yXNx-˙yNx+Ny
57 simprl N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyGGrp
58 simpl N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyN:X
59 simpl Nx=0x=0˙yXNx-˙yNx+NyNx=0x=0˙
60 59 ralimi xXNx=0x=0˙yXNx-˙yNx+NyxXNx=0x=0˙
61 60 ad2antll N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyxXNx=0x=0˙
62 fveq2 x=aNx=Na
63 62 eqeq1d x=aNx=0Na=0
64 eqeq1 x=ax=0˙a=0˙
65 63 64 bibi12d x=aNx=0x=0˙Na=0a=0˙
66 65 rspccva xXNx=0x=0˙aXNa=0a=0˙
67 61 66 sylan N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyaXNa=0a=0˙
68 simpr Nx=0x=0˙yXNx-˙yNx+NyyXNx-˙yNx+Ny
69 68 ralimi xXNx=0x=0˙yXNx-˙yNx+NyxXyXNx-˙yNx+Ny
70 69 ad2antll N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyxXyXNx-˙yNx+Ny
71 fvoveq1 x=aNx-˙y=Na-˙y
72 62 oveq1d x=aNx+Ny=Na+Ny
73 71 72 breq12d x=aNx-˙yNx+NyNa-˙yNa+Ny
74 oveq2 y=ba-˙y=a-˙b
75 74 fveq2d y=bNa-˙y=Na-˙b
76 fveq2 y=bNy=Nb
77 76 oveq2d y=bNa+Ny=Na+Nb
78 75 77 breq12d y=bNa-˙yNa+NyNa-˙bNa+Nb
79 73 78 rspc2va aXbXxXyXNx-˙yNx+NyNa-˙bNa+Nb
80 79 ancoms xXyXNx-˙yNx+NyaXbXNa-˙bNa+Nb
81 70 80 sylan N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyaXbXNa-˙bNa+Nb
82 1 2 3 4 57 58 67 81 tngngpd N:XGGrpxXNx=0x=0˙yXNx-˙yNx+NyTNrmGrp
83 56 82 impbida N:XTNrmGrpGGrpxXNx=0x=0˙yXNx-˙yNx+Ny