| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conntop |  | 
						
							| 2 |  | conntop |  | 
						
							| 3 |  | txtop |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 |  | neq0 |  | 
						
							| 6 |  | simplr |  | 
						
							| 7 | 6 | elin1d |  | 
						
							| 8 |  | elssuni |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | simprr |  | 
						
							| 11 |  | simplll |  | 
						
							| 12 | 11 1 | syl |  | 
						
							| 13 |  | simpllr |  | 
						
							| 14 | 13 2 | syl |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 15 16 | txuni |  | 
						
							| 18 | 12 14 17 | syl2anc |  | 
						
							| 19 | 10 18 | eleqtrrd |  | 
						
							| 20 |  | 1st2nd2 |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 |  | xp2nd |  | 
						
							| 23 | 19 22 | syl |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 24 | mptpreima |  | 
						
							| 26 |  | toptopon2 |  | 
						
							| 27 | 14 26 | sylib |  | 
						
							| 28 |  | toptopon2 |  | 
						
							| 29 | 12 28 | sylib |  | 
						
							| 30 |  | xp1st |  | 
						
							| 31 | 19 30 | syl |  | 
						
							| 32 | 27 29 31 | cnmptc |  | 
						
							| 33 | 27 | cnmptid |  | 
						
							| 34 | 27 32 33 | cnmpt1t |  | 
						
							| 35 |  | simplr |  | 
						
							| 36 | 35 | elin1d |  | 
						
							| 37 |  | cnima |  | 
						
							| 38 | 34 36 37 | syl2anc |  | 
						
							| 39 | 25 38 | eqeltrrid |  | 
						
							| 40 |  | simprl |  | 
						
							| 41 |  | elunii |  | 
						
							| 42 | 40 36 41 | syl2anc |  | 
						
							| 43 | 42 18 | eleqtrrd |  | 
						
							| 44 |  | xp2nd |  | 
						
							| 45 | 43 44 | syl |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 46 | mptpreima |  | 
						
							| 48 | 29 | cnmptid |  | 
						
							| 49 | 29 27 45 | cnmptc |  | 
						
							| 50 | 29 48 49 | cnmpt1t |  | 
						
							| 51 |  | cnima |  | 
						
							| 52 | 50 36 51 | syl2anc |  | 
						
							| 53 | 47 52 | eqeltrrid |  | 
						
							| 54 |  | xp1st |  | 
						
							| 55 | 43 54 | syl |  | 
						
							| 56 |  | 1st2nd2 |  | 
						
							| 57 | 43 56 | syl |  | 
						
							| 58 | 57 40 | eqeltrrd |  | 
						
							| 59 |  | opeq1 |  | 
						
							| 60 | 59 | eleq1d |  | 
						
							| 61 | 60 | rspcev |  | 
						
							| 62 | 55 58 61 | syl2anc |  | 
						
							| 63 |  | rabn0 |  | 
						
							| 64 | 62 63 | sylibr |  | 
						
							| 65 | 35 | elin2d |  | 
						
							| 66 |  | cnclima |  | 
						
							| 67 | 50 65 66 | syl2anc |  | 
						
							| 68 | 47 67 | eqeltrrid |  | 
						
							| 69 | 15 11 53 64 68 | connclo |  | 
						
							| 70 | 31 69 | eleqtrrd |  | 
						
							| 71 |  | opeq1 |  | 
						
							| 72 | 71 | eleq1d |  | 
						
							| 73 | 72 | elrab |  | 
						
							| 74 | 73 | simprbi |  | 
						
							| 75 | 70 74 | syl |  | 
						
							| 76 |  | opeq2 |  | 
						
							| 77 | 76 | eleq1d |  | 
						
							| 78 | 77 | rspcev |  | 
						
							| 79 | 45 75 78 | syl2anc |  | 
						
							| 80 |  | rabn0 |  | 
						
							| 81 | 79 80 | sylibr |  | 
						
							| 82 |  | cnclima |  | 
						
							| 83 | 34 65 82 | syl2anc |  | 
						
							| 84 | 25 83 | eqeltrrid |  | 
						
							| 85 | 16 13 39 81 84 | connclo |  | 
						
							| 86 | 23 85 | eleqtrrd |  | 
						
							| 87 |  | opeq2 |  | 
						
							| 88 | 87 | eleq1d |  | 
						
							| 89 | 88 | elrab |  | 
						
							| 90 | 89 | simprbi |  | 
						
							| 91 | 86 90 | syl |  | 
						
							| 92 | 21 91 | eqeltrd |  | 
						
							| 93 | 92 | expr |  | 
						
							| 94 | 93 | ssrdv |  | 
						
							| 95 | 9 94 | eqssd |  | 
						
							| 96 | 95 | ex |  | 
						
							| 97 | 96 | exlimdv |  | 
						
							| 98 | 5 97 | biimtrid |  | 
						
							| 99 | 98 | orrd |  | 
						
							| 100 | 99 | ex |  | 
						
							| 101 |  | vex |  | 
						
							| 102 | 101 | elpr |  | 
						
							| 103 | 100 102 | imbitrrdi |  | 
						
							| 104 | 103 | ssrdv |  | 
						
							| 105 |  | eqid |  | 
						
							| 106 | 105 | isconn2 |  | 
						
							| 107 | 4 104 106 | sylanbrc |  |