Metamath Proof Explorer


Theorem txlm

Description: Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of Gleason p. 230. (Contributed by NM, 16-Jul-2007) (Revised by Mario Carneiro, 5-May-2014)

Ref Expression
Hypotheses txlm.z Z=M
txlm.m φM
txlm.j φJTopOnX
txlm.k φKTopOnY
txlm.f φF:ZX
txlm.g φG:ZY
txlm.h H=nZFnGn
Assertion txlm φFtJRGtKSHtJ×tKRS

Proof

Step Hyp Ref Expression
1 txlm.z Z=M
2 txlm.m φM
3 txlm.j φJTopOnX
4 txlm.k φKTopOnY
5 txlm.f φF:ZX
6 txlm.g φG:ZY
7 txlm.h H=nZFnGn
8 r19.27v uJRujZkjFkuvKSvjZkjGkvuJRujZkjFkuvKSvjZkjGkv
9 r19.28v RujZkjFkuvKSvjZkjGkvvKRujZkjFkuSvjZkjGkv
10 9 ralimi uJRujZkjFkuvKSvjZkjGkvuJvKRujZkjFkuSvjZkjGkv
11 8 10 syl uJRujZkjFkuvKSvjZkjGkvuJvKRujZkjFkuSvjZkjGkv
12 simprl φwJ×tKRSwwJ×tK
13 topontop JTopOnXJTop
14 3 13 syl φJTop
15 topontop KTopOnYKTop
16 4 15 syl φKTop
17 eqid ranuJ,vKu×v=ranuJ,vKu×v
18 17 txval JTopKTopJ×tK=topGenranuJ,vKu×v
19 14 16 18 syl2anc φJ×tK=topGenranuJ,vKu×v
20 19 adantr φwJ×tKRSwJ×tK=topGenranuJ,vKu×v
21 12 20 eleqtrd φwJ×tKRSwwtopGenranuJ,vKu×v
22 simprr φwJ×tKRSwRSw
23 tg2 wtopGenranuJ,vKu×vRSwtranuJ,vKu×vRSttw
24 21 22 23 syl2anc φwJ×tKRSwtranuJ,vKu×vRSttw
25 vex uV
26 vex vV
27 25 26 xpex u×vV
28 27 rgen2w uJvKu×vV
29 eqid uJ,vKu×v=uJ,vKu×v
30 eleq2 t=u×vRStRSu×v
31 sseq1 t=u×vtwu×vw
32 30 31 anbi12d t=u×vRSttwRSu×vu×vw
33 29 32 rexrnmpo uJvKu×vVtranuJ,vKu×vRSttwuJvKRSu×vu×vw
34 28 33 ax-mp tranuJ,vKu×vRSttwuJvKRSu×vu×vw
35 24 34 sylib φwJ×tKRSwuJvKRSu×vu×vw
36 35 ex φwJ×tKRSwuJvKRSu×vu×vw
37 r19.29 uJvKRujZkjFkuSvjZkjGkvuJvKRSu×vu×vwuJvKRujZkjFkuSvjZkjGkvvKRSu×vu×vw
38 r19.29 vKRujZkjFkuSvjZkjGkvvKRSu×vu×vwvKRujZkjFkuSvjZkjGkvRSu×vu×vw
39 simprl φuJvKRSu×vu×vwRSu×v
40 opelxp RSu×vRuSv
41 39 40 sylib φuJvKRSu×vu×vwRuSv
42 pm2.27 RuRujZkjFkujZkjFku
43 pm2.27 SvSvjZkjGkvjZkjGkv
44 42 43 im2anan9 RuSvRujZkjFkuSvjZkjGkvjZkjFkujZkjGkv
45 41 44 syl φuJvKRSu×vu×vwRujZkjFkuSvjZkjGkvjZkjFkujZkjGkv
46 1 rexanuz2 jZkjFkuGkvjZkjFkujZkjGkv
47 1 uztrn2 jZkjkZ
48 opelxpi FkuGkvFkGku×v
49 fveq2 n=kFn=Fk
50 fveq2 n=kGn=Gk
51 49 50 opeq12d n=kFnGn=FkGk
52 opex FkGkV
53 51 7 52 fvmpt kZHk=FkGk
54 53 eleq1d kZHku×vFkGku×v
55 48 54 imbitrrid kZFkuGkvHku×v
56 55 adantl φuJvKRSu×vu×vwkZFkuGkvHku×v
57 simplrr φuJvKRSu×vu×vwkZu×vw
58 57 sseld φuJvKRSu×vu×vwkZHku×vHkw
59 56 58 syld φuJvKRSu×vu×vwkZFkuGkvHkw
60 47 59 sylan2 φuJvKRSu×vu×vwjZkjFkuGkvHkw
61 60 anassrs φuJvKRSu×vu×vwjZkjFkuGkvHkw
62 61 ralimdva φuJvKRSu×vu×vwjZkjFkuGkvkjHkw
63 62 reximdva φuJvKRSu×vu×vwjZkjFkuGkvjZkjHkw
64 46 63 biimtrrid φuJvKRSu×vu×vwjZkjFkujZkjGkvjZkjHkw
65 45 64 syld φuJvKRSu×vu×vwRujZkjFkuSvjZkjGkvjZkjHkw
66 65 ex φuJvKRSu×vu×vwRujZkjFkuSvjZkjGkvjZkjHkw
67 66 impcomd φuJvKRujZkjFkuSvjZkjGkvRSu×vu×vwjZkjHkw
68 67 rexlimdva φuJvKRujZkjFkuSvjZkjGkvRSu×vu×vwjZkjHkw
69 38 68 syl5 φuJvKRujZkjFkuSvjZkjGkvvKRSu×vu×vwjZkjHkw
70 69 rexlimdva φuJvKRujZkjFkuSvjZkjGkvvKRSu×vu×vwjZkjHkw
71 37 70 syl5 φuJvKRujZkjFkuSvjZkjGkvuJvKRSu×vu×vwjZkjHkw
72 71 expcomd φuJvKRSu×vu×vwuJvKRujZkjFkuSvjZkjGkvjZkjHkw
73 36 72 syld φwJ×tKRSwuJvKRujZkjFkuSvjZkjGkvjZkjHkw
74 73 expdimp φwJ×tKRSwuJvKRujZkjFkuSvjZkjGkvjZkjHkw
75 74 com23 φwJ×tKuJvKRujZkjFkuSvjZkjGkvRSwjZkjHkw
76 75 ralrimdva φuJvKRujZkjFkuSvjZkjGkvwJ×tKRSwjZkjHkw
77 11 76 syl5 φuJRujZkjFkuvKSvjZkjGkvwJ×tKRSwjZkjHkw
78 77 adantr φRXSYuJRujZkjFkuvKSvjZkjGkvwJ×tKRSwjZkjHkw
79 14 adantr φSYuJJTop
80 16 adantr φSYuJKTop
81 simprr φSYuJuJ
82 toponmax KTopOnYYK
83 4 82 syl φYK
84 83 adantr φSYuJYK
85 txopn JTopKTopuJYKu×YJ×tK
86 79 80 81 84 85 syl22anc φSYuJu×YJ×tK
87 eleq2 w=u×YRSwRSu×Y
88 eleq2 w=u×YHkwHku×Y
89 88 rexralbidv w=u×YjZkjHkwjZkjHku×Y
90 87 89 imbi12d w=u×YRSwjZkjHkwRSu×YjZkjHku×Y
91 90 rspcv u×YJ×tKwJ×tKRSwjZkjHkwRSu×YjZkjHku×Y
92 86 91 syl φSYuJwJ×tKRSwjZkjHkwRSu×YjZkjHku×Y
93 simprl φSYuJSY
94 opelxpi RuSYRSu×Y
95 93 94 sylan2 RuφSYuJRSu×Y
96 95 expcom φSYuJRuRSu×Y
97 53 eleq1d kZHku×YFkGku×Y
98 opelxp1 FkGku×YFku
99 97 98 syl6bi kZHku×YFku
100 47 99 syl jZkjHku×YFku
101 100 ralimdva jZkjHku×YkjFku
102 101 reximia jZkjHku×YjZkjFku
103 102 a1i φSYuJjZkjHku×YjZkjFku
104 96 103 imim12d φSYuJRSu×YjZkjHku×YRujZkjFku
105 92 104 syld φSYuJwJ×tKRSwjZkjHkwRujZkjFku
106 105 anassrs φSYuJwJ×tKRSwjZkjHkwRujZkjFku
107 106 ralrimdva φSYwJ×tKRSwjZkjHkwuJRujZkjFku
108 107 adantrl φRXSYwJ×tKRSwjZkjHkwuJRujZkjFku
109 14 adantr φRXvKJTop
110 16 adantr φRXvKKTop
111 toponmax JTopOnXXJ
112 3 111 syl φXJ
113 112 adantr φRXvKXJ
114 simprr φRXvKvK
115 txopn JTopKTopXJvKX×vJ×tK
116 109 110 113 114 115 syl22anc φRXvKX×vJ×tK
117 eleq2 w=X×vRSwRSX×v
118 eleq2 w=X×vHkwHkX×v
119 118 rexralbidv w=X×vjZkjHkwjZkjHkX×v
120 117 119 imbi12d w=X×vRSwjZkjHkwRSX×vjZkjHkX×v
121 120 rspcv X×vJ×tKwJ×tKRSwjZkjHkwRSX×vjZkjHkX×v
122 116 121 syl φRXvKwJ×tKRSwjZkjHkwRSX×vjZkjHkX×v
123 opelxpi RXSvRSX×v
124 123 ex RXSvRSX×v
125 124 ad2antrl φRXvKSvRSX×v
126 53 eleq1d kZHkX×vFkGkX×v
127 opelxp2 FkGkX×vGkv
128 126 127 syl6bi kZHkX×vGkv
129 47 128 syl jZkjHkX×vGkv
130 129 ralimdva jZkjHkX×vkjGkv
131 130 reximia jZkjHkX×vjZkjGkv
132 131 a1i φRXvKjZkjHkX×vjZkjGkv
133 125 132 imim12d φRXvKRSX×vjZkjHkX×vSvjZkjGkv
134 122 133 syld φRXvKwJ×tKRSwjZkjHkwSvjZkjGkv
135 134 anassrs φRXvKwJ×tKRSwjZkjHkwSvjZkjGkv
136 135 ralrimdva φRXwJ×tKRSwjZkjHkwvKSvjZkjGkv
137 136 adantrr φRXSYwJ×tKRSwjZkjHkwvKSvjZkjGkv
138 108 137 jcad φRXSYwJ×tKRSwjZkjHkwuJRujZkjFkuvKSvjZkjGkv
139 78 138 impbid φRXSYuJRujZkjFkuvKSvjZkjGkvwJ×tKRSwjZkjHkw
140 139 pm5.32da φRXSYuJRujZkjFkuvKSvjZkjGkvRXSYwJ×tKRSwjZkjHkw
141 opelxp RSX×YRXSY
142 141 anbi1i RSX×YwJ×tKRSwjZkjHkwRXSYwJ×tKRSwjZkjHkw
143 140 142 bitr4di φRXSYuJRujZkjFkuvKSvjZkjGkvRSX×YwJ×tKRSwjZkjHkw
144 eqidd φkZFk=Fk
145 3 1 2 5 144 lmbrf φFtJRRXuJRujZkjFku
146 eqidd φkZGk=Gk
147 4 1 2 6 146 lmbrf φGtKSSYvKSvjZkjGkv
148 145 147 anbi12d φFtJRGtKSRXuJRujZkjFkuSYvKSvjZkjGkv
149 an4 RXuJRujZkjFkuSYvKSvjZkjGkvRXSYuJRujZkjFkuvKSvjZkjGkv
150 148 149 bitrdi φFtJRGtKSRXSYuJRujZkjFkuvKSvjZkjGkv
151 txtopon JTopOnXKTopOnYJ×tKTopOnX×Y
152 3 4 151 syl2anc φJ×tKTopOnX×Y
153 5 ffvelcdmda φnZFnX
154 6 ffvelcdmda φnZGnY
155 153 154 opelxpd φnZFnGnX×Y
156 155 7 fmptd φH:ZX×Y
157 eqidd φkZHk=Hk
158 152 1 2 156 157 lmbrf φHtJ×tKRSRSX×YwJ×tKRSwjZkjHkw
159 143 150 158 3bitr4d φFtJRGtKSHtJ×tKRS