Metamath Proof Explorer


Theorem ulmcaulem

Description: Lemma for ulmcau and ulmcau2 : show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses ulmcau.z Z=M
ulmcau.m φM
ulmcau.s φSV
ulmcau.f φF:ZS
Assertion ulmcaulem φx+jZkjzSFkzFjz<xx+jZkjmkzSFkzFmz<x

Proof

Step Hyp Ref Expression
1 ulmcau.z Z=M
2 ulmcau.m φM
3 ulmcau.s φSV
4 ulmcau.f φF:ZS
5 breq2 x=wFkzFjz<xFkzFjz<w
6 5 ralbidv x=wzSFkzFjz<xzSFkzFjz<w
7 6 rexralbidv x=wjZkjzSFkzFjz<xjZkjzSFkzFjz<w
8 7 cbvralvw x+jZkjzSFkzFjz<xw+jZkjzSFkzFjz<w
9 rphalfcl x+x2+
10 breq2 w=x2FkzFjz<wFkzFjz<x2
11 10 ralbidv w=x2zSFkzFjz<wzSFkzFjz<x2
12 11 rexralbidv w=x2jZkjzSFkzFjz<wjZkjzSFkzFjz<x2
13 12 rspcv x2+w+jZkjzSFkzFjz<wjZkjzSFkzFjz<x2
14 9 13 syl x+w+jZkjzSFkzFjz<wjZkjzSFkzFjz<x2
15 14 adantl φx+w+jZkjzSFkzFjz<wjZkjzSFkzFjz<x2
16 fveq2 k=mFk=Fm
17 16 fveq1d k=mFkz=Fmz
18 17 fvoveq1d k=mFkzFjz=FmzFjz
19 18 breq1d k=mFkzFjz<x2FmzFjz<x2
20 19 ralbidv k=mzSFkzFjz<x2zSFmzFjz<x2
21 20 cbvralvw kjzSFkzFjz<x2mjzSFmzFjz<x2
22 21 biimpi kjzSFkzFjz<x2mjzSFmzFjz<x2
23 uzss kjkj
24 23 ad2antlr φx+jZkjzSFkzFjz<x2kj
25 ssralv kjmjzSFmzFjz<x2mkzSFmzFjz<x2
26 24 25 syl φx+jZkjzSFkzFjz<x2mjzSFmzFjz<x2mkzSFmzFjz<x2
27 r19.26 zSFkzFjz<x2FmzFjz<x2zSFkzFjz<x2zSFmzFjz<x2
28 4 adantr φx+F:ZS
29 28 ad3antrrr φx+jZkjmkF:ZS
30 1 uztrn2 jZkjkZ
31 30 adantll φx+jZkjkZ
32 1 uztrn2 kZmkmZ
33 31 32 sylan φx+jZkjmkmZ
34 29 33 ffvelcdmd φx+jZkjmkFmS
35 elmapi FmSFm:S
36 34 35 syl φx+jZkjmkFm:S
37 36 ffvelcdmda φx+jZkjmkzSFmz
38 28 ffvelcdmda φx+jZFjS
39 38 ad2antrr φx+jZkjmkFjS
40 elmapi FjSFj:S
41 39 40 syl φx+jZkjmkFj:S
42 41 ffvelcdmda φx+jZkjmkzSFjz
43 37 42 abssubd φx+jZkjmkzSFmzFjz=FjzFmz
44 43 breq1d φx+jZkjmkzSFmzFjz<x2FjzFmz<x2
45 44 biimpd φx+jZkjmkzSFmzFjz<x2FjzFmz<x2
46 ffvelcdm F:ZSkZFkS
47 28 30 46 syl2an φx+jZkjFkS
48 47 anassrs φx+jZkjFkS
49 48 adantr φx+jZkjmkFkS
50 elmapi FkSFk:S
51 49 50 syl φx+jZkjmkFk:S
52 51 ffvelcdmda φx+jZkjmkzSFkz
53 rpre x+x
54 53 ad2antlr φx+jZx
55 54 ad3antrrr φx+jZkjmkzSx
56 abs3lem FkzFmzFjzxFkzFjz<x2FjzFmz<x2FkzFmz<x
57 52 37 42 55 56 syl22anc φx+jZkjmkzSFkzFjz<x2FjzFmz<x2FkzFmz<x
58 45 57 sylan2d φx+jZkjmkzSFkzFjz<x2FmzFjz<x2FkzFmz<x
59 58 ralimdva φx+jZkjmkzSFkzFjz<x2FmzFjz<x2zSFkzFmz<x
60 27 59 biimtrrid φx+jZkjmkzSFkzFjz<x2zSFmzFjz<x2zSFkzFmz<x
61 60 expdimp φx+jZkjmkzSFkzFjz<x2zSFmzFjz<x2zSFkzFmz<x
62 61 an32s φx+jZkjzSFkzFjz<x2mkzSFmzFjz<x2zSFkzFmz<x
63 62 ralimdva φx+jZkjzSFkzFjz<x2mkzSFmzFjz<x2mkzSFkzFmz<x
64 26 63 syld φx+jZkjzSFkzFjz<x2mjzSFmzFjz<x2mkzSFkzFmz<x
65 64 impancom φx+jZkjmjzSFmzFjz<x2zSFkzFjz<x2mkzSFkzFmz<x
66 65 an32s φx+jZmjzSFmzFjz<x2kjzSFkzFjz<x2mkzSFkzFmz<x
67 66 ralimdva φx+jZmjzSFmzFjz<x2kjzSFkzFjz<x2kjmkzSFkzFmz<x
68 67 ex φx+jZmjzSFmzFjz<x2kjzSFkzFjz<x2kjmkzSFkzFmz<x
69 68 com23 φx+jZkjzSFkzFjz<x2mjzSFmzFjz<x2kjmkzSFkzFmz<x
70 22 69 mpdi φx+jZkjzSFkzFjz<x2kjmkzSFkzFmz<x
71 70 reximdva φx+jZkjzSFkzFjz<x2jZkjmkzSFkzFmz<x
72 15 71 syld φx+w+jZkjzSFkzFjz<wjZkjmkzSFkzFmz<x
73 72 ralrimdva φw+jZkjzSFkzFjz<wx+jZkjmkzSFkzFmz<x
74 8 73 biimtrid φx+jZkjzSFkzFjz<xx+jZkjmkzSFkzFmz<x
75 eluzelz jMj
76 75 1 eleq2s jZj
77 uzid jjj
78 76 77 syl jZjj
79 78 adantl φjZjj
80 fveq2 k=jk=j
81 fveq2 k=jFk=Fj
82 81 fveq1d k=jFkz=Fjz
83 82 fvoveq1d k=jFkzFmz=FjzFmz
84 83 breq1d k=jFkzFmz<xFjzFmz<x
85 84 ralbidv k=jzSFkzFmz<xzSFjzFmz<x
86 80 85 raleqbidv k=jmkzSFkzFmz<xmjzSFjzFmz<x
87 86 rspcv jjkjmkzSFkzFmz<xmjzSFjzFmz<x
88 79 87 syl φjZkjmkzSFkzFmz<xmjzSFjzFmz<x
89 fveq2 m=kFm=Fk
90 89 fveq1d m=kFmz=Fkz
91 90 oveq2d m=kFjzFmz=FjzFkz
92 91 fveq2d m=kFjzFmz=FjzFkz
93 92 breq1d m=kFjzFmz<xFjzFkz<x
94 93 ralbidv m=kzSFjzFmz<xzSFjzFkz<x
95 94 cbvralvw mjzSFjzFmz<xkjzSFjzFkz<x
96 4 ffvelcdmda φjZFjS
97 96 adantr φjZkjFjS
98 97 40 syl φjZkjFj:S
99 98 ffvelcdmda φjZkjzSFjz
100 4 30 46 syl2an φjZkjFkS
101 100 anassrs φjZkjFkS
102 101 50 syl φjZkjFk:S
103 102 ffvelcdmda φjZkjzSFkz
104 99 103 abssubd φjZkjzSFjzFkz=FkzFjz
105 104 breq1d φjZkjzSFjzFkz<xFkzFjz<x
106 105 ralbidva φjZkjzSFjzFkz<xzSFkzFjz<x
107 106 ralbidva φjZkjzSFjzFkz<xkjzSFkzFjz<x
108 95 107 bitrid φjZmjzSFjzFmz<xkjzSFkzFjz<x
109 88 108 sylibd φjZkjmkzSFkzFmz<xkjzSFkzFjz<x
110 109 reximdva φjZkjmkzSFkzFmz<xjZkjzSFkzFjz<x
111 110 ralimdv φx+jZkjmkzSFkzFmz<xx+jZkjzSFkzFjz<x
112 74 111 impbid φx+jZkjzSFkzFjz<xx+jZkjmkzSFkzFmz<x