Metamath Proof Explorer


Theorem uncf2

Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Hypotheses uncfval.g F=⟨“CDE”⟩uncurryFG
uncfval.c φDCat
uncfval.d φECat
uncfval.f φGCFuncDFuncCatE
uncf1.a A=BaseC
uncf1.b B=BaseD
uncf1.x φXA
uncf1.y φYB
uncf2.h H=HomC
uncf2.j J=HomD
uncf2.z φZA
uncf2.w φWB
uncf2.r φRXHZ
uncf2.s φSYJW
Assertion uncf2 φRXY2ndFZWS=X2ndGZRW1st1stGXY1st1stGXWcompE1st1stGZWY2nd1stGXWS

Proof

Step Hyp Ref Expression
1 uncfval.g F=⟨“CDE”⟩uncurryFG
2 uncfval.c φDCat
3 uncfval.d φECat
4 uncfval.f φGCFuncDFuncCatE
5 uncf1.a A=BaseC
6 uncf1.b B=BaseD
7 uncf1.x φXA
8 uncf1.y φYB
9 uncf2.h H=HomC
10 uncf2.j J=HomD
11 uncf2.z φZA
12 uncf2.w φWB
13 uncf2.r φRXHZ
14 uncf2.s φSYJW
15 1 2 3 4 uncfval φF=DevalFEfuncGfuncC1stFD⟨,⟩FC2ndFD
16 15 fveq2d φ2ndF=2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFD
17 16 oveqd φXY2ndFZW=XY2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDZW
18 17 oveqd φRXY2ndFZWS=RXY2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDZWS
19 df-ov RXY2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDZWS=XY2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDZWRS
20 eqid C×cD=C×cD
21 20 5 6 xpcbas A×B=BaseC×cD
22 eqid GfuncC1stFD⟨,⟩FC2ndFD=GfuncC1stFD⟨,⟩FC2ndFD
23 eqid DFuncCatE×cD=DFuncCatE×cD
24 funcrcl GCFuncDFuncCatECCatDFuncCatECat
25 4 24 syl φCCatDFuncCatECat
26 25 simpld φCCat
27 eqid C1stFD=C1stFD
28 20 26 2 27 1stfcl φC1stFDC×cDFuncC
29 28 4 cofucl φGfuncC1stFDC×cDFuncDFuncCatE
30 eqid C2ndFD=C2ndFD
31 20 26 2 30 2ndfcl φC2ndFDC×cDFuncD
32 22 23 29 31 prfcl φGfuncC1stFD⟨,⟩FC2ndFDC×cDFuncDFuncCatE×cD
33 eqid DevalFE=DevalFE
34 eqid DFuncCatE=DFuncCatE
35 33 34 2 3 evlfcl φDevalFEDFuncCatE×cDFuncE
36 7 8 opelxpd φXYA×B
37 11 12 opelxpd φZWA×B
38 eqid HomC×cD=HomC×cD
39 13 14 opelxpd φRSXHZ×YJW
40 20 5 6 9 10 7 8 11 12 38 xpchom2 φXYHomC×cDZW=XHZ×YJW
41 39 40 eleqtrrd φRSXYHomC×cDZW
42 21 32 35 36 37 38 41 cofu2 φXY2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDZWRS=1stGfuncC1stFD⟨,⟩FC2ndFDXY2ndDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDZWXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS
43 19 42 eqtrid φRXY2ndDevalFEfuncGfuncC1stFD⟨,⟩FC2ndFDZWS=1stGfuncC1stFD⟨,⟩FC2ndFDXY2ndDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDZWXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS
44 18 43 eqtrd φRXY2ndFZWS=1stGfuncC1stFD⟨,⟩FC2ndFDXY2ndDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDZWXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS
45 22 21 38 29 31 36 prf1 φ1stGfuncC1stFD⟨,⟩FC2ndFDXY=1stGfuncC1stFDXY1stC2ndFDXY
46 21 28 4 36 cofu1 φ1stGfuncC1stFDXY=1stG1stC1stFDXY
47 20 21 38 26 2 27 36 1stf1 φ1stC1stFDXY=1stXY
48 op1stg XAYB1stXY=X
49 7 8 48 syl2anc φ1stXY=X
50 47 49 eqtrd φ1stC1stFDXY=X
51 50 fveq2d φ1stG1stC1stFDXY=1stGX
52 46 51 eqtrd φ1stGfuncC1stFDXY=1stGX
53 20 21 38 26 2 30 36 2ndf1 φ1stC2ndFDXY=2ndXY
54 op2ndg XAYB2ndXY=Y
55 7 8 54 syl2anc φ2ndXY=Y
56 53 55 eqtrd φ1stC2ndFDXY=Y
57 52 56 opeq12d φ1stGfuncC1stFDXY1stC2ndFDXY=1stGXY
58 45 57 eqtrd φ1stGfuncC1stFD⟨,⟩FC2ndFDXY=1stGXY
59 22 21 38 29 31 37 prf1 φ1stGfuncC1stFD⟨,⟩FC2ndFDZW=1stGfuncC1stFDZW1stC2ndFDZW
60 21 28 4 37 cofu1 φ1stGfuncC1stFDZW=1stG1stC1stFDZW
61 20 21 38 26 2 27 37 1stf1 φ1stC1stFDZW=1stZW
62 op1stg ZAWB1stZW=Z
63 11 12 62 syl2anc φ1stZW=Z
64 61 63 eqtrd φ1stC1stFDZW=Z
65 64 fveq2d φ1stG1stC1stFDZW=1stGZ
66 60 65 eqtrd φ1stGfuncC1stFDZW=1stGZ
67 20 21 38 26 2 30 37 2ndf1 φ1stC2ndFDZW=2ndZW
68 op2ndg ZAWB2ndZW=W
69 11 12 68 syl2anc φ2ndZW=W
70 67 69 eqtrd φ1stC2ndFDZW=W
71 66 70 opeq12d φ1stGfuncC1stFDZW1stC2ndFDZW=1stGZW
72 59 71 eqtrd φ1stGfuncC1stFD⟨,⟩FC2ndFDZW=1stGZW
73 58 72 oveq12d φ1stGfuncC1stFD⟨,⟩FC2ndFDXY2ndDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDZW=1stGXY2ndDevalFE1stGZW
74 22 21 38 29 31 36 37 41 prf2 φXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS=XY2ndGfuncC1stFDZWRSXY2ndC2ndFDZWRS
75 21 28 4 36 37 38 41 cofu2 φXY2ndGfuncC1stFDZWRS=1stC1stFDXY2ndG1stC1stFDZWXY2ndC1stFDZWRS
76 50 64 oveq12d φ1stC1stFDXY2ndG1stC1stFDZW=X2ndGZ
77 20 21 38 26 2 27 36 37 1stf2 φXY2ndC1stFDZW=1stXYHomC×cDZW
78 77 fveq1d φXY2ndC1stFDZWRS=1stXYHomC×cDZWRS
79 41 fvresd φ1stXYHomC×cDZWRS=1stRS
80 op1stg RXHZSYJW1stRS=R
81 13 14 80 syl2anc φ1stRS=R
82 78 79 81 3eqtrd φXY2ndC1stFDZWRS=R
83 76 82 fveq12d φ1stC1stFDXY2ndG1stC1stFDZWXY2ndC1stFDZWRS=X2ndGZR
84 75 83 eqtrd φXY2ndGfuncC1stFDZWRS=X2ndGZR
85 20 21 38 26 2 30 36 37 2ndf2 φXY2ndC2ndFDZW=2ndXYHomC×cDZW
86 85 fveq1d φXY2ndC2ndFDZWRS=2ndXYHomC×cDZWRS
87 41 fvresd φ2ndXYHomC×cDZWRS=2ndRS
88 op2ndg RXHZSYJW2ndRS=S
89 13 14 88 syl2anc φ2ndRS=S
90 86 87 89 3eqtrd φXY2ndC2ndFDZWRS=S
91 84 90 opeq12d φXY2ndGfuncC1stFDZWRSXY2ndC2ndFDZWRS=X2ndGZRS
92 74 91 eqtrd φXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS=X2ndGZRS
93 73 92 fveq12d φ1stGfuncC1stFD⟨,⟩FC2ndFDXY2ndDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDZWXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS=1stGXY2ndDevalFE1stGZWX2ndGZRS
94 df-ov X2ndGZR1stGXY2ndDevalFE1stGZWS=1stGXY2ndDevalFE1stGZWX2ndGZRS
95 93 94 eqtr4di φ1stGfuncC1stFD⟨,⟩FC2ndFDXY2ndDevalFE1stGfuncC1stFD⟨,⟩FC2ndFDZWXY2ndGfuncC1stFD⟨,⟩FC2ndFDZWRS=X2ndGZR1stGXY2ndDevalFE1stGZWS
96 eqid compE=compE
97 eqid DNatE=DNatE
98 34 fucbas DFuncE=BaseDFuncCatE
99 relfunc RelCFuncDFuncCatE
100 1st2ndbr RelCFuncDFuncCatEGCFuncDFuncCatE1stGCFuncDFuncCatE2ndG
101 99 4 100 sylancr φ1stGCFuncDFuncCatE2ndG
102 5 98 101 funcf1 φ1stG:ADFuncE
103 102 7 ffvelcdmd φ1stGXDFuncE
104 102 11 ffvelcdmd φ1stGZDFuncE
105 eqid 1stGXY2ndDevalFE1stGZW=1stGXY2ndDevalFE1stGZW
106 34 97 fuchom DNatE=HomDFuncCatE
107 5 9 106 101 7 11 funcf2 φX2ndGZ:XHZ1stGXDNatE1stGZ
108 107 13 ffvelcdmd φX2ndGZR1stGXDNatE1stGZ
109 33 2 3 6 10 96 97 103 104 8 12 105 108 14 evlf2val φX2ndGZR1stGXY2ndDevalFE1stGZWS=X2ndGZRW1st1stGXY1st1stGXWcompE1st1stGZWY2nd1stGXWS
110 44 95 109 3eqtrd φRXY2ndFZWS=X2ndGZRW1st1stGXY1st1stGXWcompE1st1stGZWY2nd1stGXWS