Metamath Proof Explorer


Theorem upgrwlkdvdelem

Description: Lemma for upgrwlkdvde . (Contributed by Alexander van der Vekens, 27-Oct-2017) (Proof shortened by AV, 17-Jan-2021)

Ref Expression
Assertion upgrwlkdvdelem P:0F1-1VFWorddomIk0..^FIFk=PkPk+1FunF-1

Proof

Step Hyp Ref Expression
1 wrdfin FWorddomIFFin
2 wrdf FWorddomIF:0..^FdomI
3 simpr FFinF:0..^FdomIF:0..^FdomI
4 3 adantr FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1F:0..^FdomI
5 2fveq3 k=xIFk=IFx
6 fveq2 k=xPk=Px
7 fvoveq1 k=xPk+1=Px+1
8 6 7 preq12d k=xPkPk+1=PxPx+1
9 5 8 eqeq12d k=xIFk=PkPk+1IFx=PxPx+1
10 9 rspcv x0..^Fk0..^FIFk=PkPk+1IFx=PxPx+1
11 2fveq3 k=yIFk=IFy
12 fveq2 k=yPk=Py
13 fvoveq1 k=yPk+1=Py+1
14 12 13 preq12d k=yPkPk+1=PyPy+1
15 11 14 eqeq12d k=yIFk=PkPk+1IFy=PyPy+1
16 15 rspcv y0..^Fk0..^FIFk=PkPk+1IFy=PyPy+1
17 10 16 anim12ii x0..^Fy0..^Fk0..^FIFk=PkPk+1IFx=PxPx+1IFy=PyPy+1
18 fveq2 Fx=FyIFx=IFy
19 simpl IFx=PxPx+1IFy=PyPy+1IFx=PxPx+1
20 19 eqcomd IFx=PxPx+1IFy=PyPy+1PxPx+1=IFx
21 20 adantl IFx=IFyIFx=PxPx+1IFy=PyPy+1PxPx+1=IFx
22 simpl IFx=IFyIFx=PxPx+1IFy=PyPy+1IFx=IFy
23 simpr IFx=PxPx+1IFy=PyPy+1IFy=PyPy+1
24 23 adantl IFx=IFyIFx=PxPx+1IFy=PyPy+1IFy=PyPy+1
25 21 22 24 3eqtrd IFx=IFyIFx=PxPx+1IFy=PyPy+1PxPx+1=PyPy+1
26 fvex PxV
27 fvex Px+1V
28 fvex PyV
29 fvex Py+1V
30 26 27 28 29 preq12b PxPx+1=PyPy+1Px=PyPx+1=Py+1Px=Py+1Px+1=Py
31 dff13 P:0F1-1VP:0FVa0Fb0FPa=Pba=b
32 elfzofz x0..^Fx0F
33 elfzofz y0..^Fy0F
34 fveqeq2 a=xPa=PbPx=Pb
35 eqeq1 a=xa=bx=b
36 34 35 imbi12d a=xPa=Pba=bPx=Pbx=b
37 fveq2 b=yPb=Py
38 37 eqeq2d b=yPx=PbPx=Py
39 eqeq2 b=yx=bx=y
40 38 39 imbi12d b=yPx=Pbx=bPx=Pyx=y
41 36 40 rspc2v x0Fy0Fa0Fb0FPa=Pba=bPx=Pyx=y
42 32 33 41 syl2an x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Pyx=y
43 42 a1dd x0..^Fy0..^Fa0Fb0FPa=Pba=bFFinPx=Pyx=y
44 43 com14 Px=Pya0Fb0FPa=Pba=bFFinx0..^Fy0..^Fx=y
45 44 adantr Px=PyPx+1=Py+1a0Fb0FPa=Pba=bFFinx0..^Fy0..^Fx=y
46 hashcl FFinF0
47 32 a1i F0x0..^Fx0F
48 fzofzp1 y0..^Fy+10F
49 47 48 anim12d1 F0x0..^Fy0..^Fx0Fy+10F
50 49 imp F0x0..^Fy0..^Fx0Fy+10F
51 fveq2 b=y+1Pb=Py+1
52 51 eqeq2d b=y+1Px=PbPx=Py+1
53 eqeq2 b=y+1x=bx=y+1
54 52 53 imbi12d b=y+1Px=Pbx=bPx=Py+1x=y+1
55 36 54 rspc2v x0Fy+10Fa0Fb0FPa=Pba=bPx=Py+1x=y+1
56 50 55 syl F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1x=y+1
57 56 imp F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1x=y+1
58 fzofzp1 x0..^Fx+10F
59 58 a1i F0x0..^Fx+10F
60 59 33 anim12d1 F0x0..^Fy0..^Fx+10Fy0F
61 60 imp F0x0..^Fy0..^Fx+10Fy0F
62 fveqeq2 a=x+1Pa=PbPx+1=Pb
63 eqeq1 a=x+1a=bx+1=b
64 62 63 imbi12d a=x+1Pa=Pba=bPx+1=Pbx+1=b
65 37 eqeq2d b=yPx+1=PbPx+1=Py
66 eqeq2 b=yx+1=bx+1=y
67 65 66 imbi12d b=yPx+1=Pbx+1=bPx+1=Pyx+1=y
68 64 67 rspc2v x+10Fy0Fa0Fb0FPa=Pba=bPx+1=Pyx+1=y
69 61 68 syl F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx+1=Pyx+1=y
70 69 imp F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx+1=Pyx+1=y
71 57 70 anim12d F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=Pyx=y+1x+1=y
72 71 expimpd F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=Pyx=y+1x+1=y
73 oveq1 x=y+1x+1=y+1+1
74 73 eqeq1d x=y+1x+1=yy+1+1=y
75 74 adantl x0..^Fy0..^Fx=y+1x+1=yy+1+1=y
76 elfzonn0 y0..^Fy0
77 nn0cn y0y
78 add1p1 yy+1+1=y+2
79 77 78 syl y0y+1+1=y+2
80 79 eqeq1d y0y+1+1=yy+2=y
81 2cnd y02
82 2ne0 20
83 82 a1i y020
84 addn0nid y220y+2y
85 77 81 83 84 syl3anc y0y+2y
86 eqneqall y+2=yy+2yx=y
87 85 86 syl5com y0y+2=yx=y
88 80 87 sylbid y0y+1+1=yx=y
89 76 88 syl y0..^Fy+1+1=yx=y
90 89 adantl x0..^Fy0..^Fy+1+1=yx=y
91 90 adantr x0..^Fy0..^Fx=y+1y+1+1=yx=y
92 75 91 sylbid x0..^Fy0..^Fx=y+1x+1=yx=y
93 92 expimpd x0..^Fy0..^Fx=y+1x+1=yx=y
94 93 adantl F0x0..^Fy0..^Fx=y+1x+1=yx=y
95 72 94 syld F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=Pyx=y
96 95 ex F0x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=Pyx=y
97 46 96 syl FFinx0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=Pyx=y
98 97 com3l x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=PyFFinx=y
99 98 expd x0..^Fy0..^Fa0Fb0FPa=Pba=bPx=Py+1Px+1=PyFFinx=y
100 99 com34 x0..^Fy0..^Fa0Fb0FPa=Pba=bFFinPx=Py+1Px+1=Pyx=y
101 100 com14 Px=Py+1Px+1=Pya0Fb0FPa=Pba=bFFinx0..^Fy0..^Fx=y
102 45 101 jaoi Px=PyPx+1=Py+1Px=Py+1Px+1=Pya0Fb0FPa=Pba=bFFinx0..^Fy0..^Fx=y
103 102 adantld Px=PyPx+1=Py+1Px=Py+1Px+1=PyP:0FVa0Fb0FPa=Pba=bFFinx0..^Fy0..^Fx=y
104 31 103 biimtrid Px=PyPx+1=Py+1Px=Py+1Px+1=PyP:0F1-1VFFinx0..^Fy0..^Fx=y
105 104 com23 Px=PyPx+1=Py+1Px=Py+1Px+1=PyFFinP:0F1-1Vx0..^Fy0..^Fx=y
106 30 105 sylbi PxPx+1=PyPy+1FFinP:0F1-1Vx0..^Fy0..^Fx=y
107 25 106 syl IFx=IFyIFx=PxPx+1IFy=PyPy+1FFinP:0F1-1Vx0..^Fy0..^Fx=y
108 107 ex IFx=IFyIFx=PxPx+1IFy=PyPy+1FFinP:0F1-1Vx0..^Fy0..^Fx=y
109 18 108 syl Fx=FyIFx=PxPx+1IFy=PyPy+1FFinP:0F1-1Vx0..^Fy0..^Fx=y
110 109 com15 x0..^Fy0..^FIFx=PxPx+1IFy=PyPy+1FFinP:0F1-1VFx=Fyx=y
111 17 110 syld x0..^Fy0..^Fk0..^FIFk=PkPk+1FFinP:0F1-1VFx=Fyx=y
112 111 com14 P:0F1-1Vk0..^FIFk=PkPk+1FFinx0..^Fy0..^FFx=Fyx=y
113 112 imp P:0F1-1Vk0..^FIFk=PkPk+1FFinx0..^Fy0..^FFx=Fyx=y
114 113 impcom FFinP:0F1-1Vk0..^FIFk=PkPk+1x0..^Fy0..^FFx=Fyx=y
115 114 ralrimivv FFinP:0F1-1Vk0..^FIFk=PkPk+1x0..^Fy0..^FFx=Fyx=y
116 115 adantlr FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1x0..^Fy0..^FFx=Fyx=y
117 dff13 F:0..^F1-1domIF:0..^FdomIx0..^Fy0..^FFx=Fyx=y
118 4 116 117 sylanbrc FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1F:0..^F1-1domI
119 df-f1 F:0..^F1-1domIF:0..^FdomIFunF-1
120 118 119 sylib FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1F:0..^FdomIFunF-1
121 simpr F:0..^FdomIFunF-1FunF-1
122 120 121 syl FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1FunF-1
123 122 ex FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1FunF-1
124 123 expd FFinF:0..^FdomIP:0F1-1Vk0..^FIFk=PkPk+1FunF-1
125 1 2 124 syl2anc FWorddomIP:0F1-1Vk0..^FIFk=PkPk+1FunF-1
126 125 impcom P:0F1-1VFWorddomIk0..^FIFk=PkPk+1FunF-1